NORTEK MANUALS

Integrator's Guide

Generation 2 2D Horizontal Profiler

Table of Contents

Ch. 1	Introduction	6
Ch. 2	Basic interface concepts	7
2.1	Modes	7
2.2	Break	
2.3	Dual Processor	
Ch. 3	Telemetry	8
Ch. 4	Serial Operation	9
Ch. 5	Ethernet Operation	9
5.1	Telnet Connection	10
5.2	Raw Connections	10
5.3	FTP	11
5.4	HTTP	11
5.5	UDP	11
5.6	PTP/NTP	12
Ch. 6	Commands	13
6.1	List of Commands	15
6.2	Instrument main settings	17
6.3	Clock settings	19
6.4	Clock settings as strings	20
6.5	Deployment plan parameters	20
6.6	Average mode settings	21
6.7	Get memory usage	23
6.8	Get power use	24
6.9	Get measured precision	24
6.10	Instrument user settings	25
6.11	Get instrument ID	26
6.12	Reload default settings	27
6.13	Save settings	27
6.14	Deploy instrument	28
6.15	Start instrument	29
6.16	Enter command mode	29
6.17	Data retrieval mode	29
6.18	Enter measurement mode	29
6.19	Write to file	30

6.20	Power down	30
6.21	Erase files on recorder	31
6.22	Format recorder	31
6.23	SEC reboot	31
6.24	List files	32
6.25	Download	32
6.26	Inquire state	33
6.27	Get instrument state	34
6.28	Get error	35
6.29	Get all	35
6.30	Get recorder state	36
6.31	Get configuration limits	36
6.32	Get transfer matrices	37
6.33	Average mode telemetry settings	38
6.34	Download telemetry	39
6.35	Save configuration to file	40
6.36	Erase telemetry file	40
6.37	Write tag output	41
6.38	Precision time protocol	41
6.39	Wake Doppler processor	42
6.40	Get hardware specifications	43
6.41	Add license	43
6.42	Delete license	44
6.43	Lists license keys	44
Ch. 7	Data Formats	45
7.1	_HeaderData	46
7.2	_CommonData	47
7.3	_DF3 CurrentProfileData	52
7.4	DF7 CurrentProfileData	54
7.5	DF3 VelocityData	64
7.6	DF3 SpectrumData	67
7.7	StringData	69
Ch. 8	Data Quality Control	70
8.1	Telemetry Quality Control	71
Ch. 9	Telemetry Data Formats	72
9.1	Average Telemetry Data Formats	72
	NMEA Format (DF=100)	
	NMEA Format 1 and 2 (DF=101/102)	75
	NMEA Format 3 and 4 (DF=103/104)	78

1 Introduction

This document includes an overview of data formats and commands relevant for the 2D Horizontal Profiler. You can see if this includes your instrument by looking at its serial number. The 2D Horizontal Profilers are characterized by a six-digit serial number preceded by a four-letter combination. For the 400 kHz 2D profiler, the letter combination is **S4SH**, while for the 1 MHz instrument, the letter combination is either **S1VH** or **S1SH**. Note that instruments with different frequency have slightly different functionality. For data formats relevant for the previous generation of 2D instruments, AWAC 2D and AquaPro 2D, please refer to Integrators Guide - Classic.

Nortek online

At our website, www.nortekgroup.com, you will find technical support, user manuals, FAQs and the latest software and firmware. General information, technical notes, and user experience can also be found here. Your feedback is appreciated. If you find errors, omissions, or sections poorly explained, please do not hesitate to contact us. We appreciate your comments and your fellow users will as well.

Contact Information

If you need more information, support or other assistance, you are always welcome to contact us or any of our subsidiaries by email or phone. We recommend first contacting your local sales representative before the Nortek main office. We strive to answer all requests to our support email within one working day. Please include as much information as possible in you initial request, such as instrument serial number, data files, configuration, and information about the set up.

Email: support@nortekgroup.com (for other general

inquiries)

Phone: +47 67 17 45 00

You can also write us at: Nortek AS Vangkroken 2 1351 RUD Norway

Version/revision	Date	Comments
Version 2024.1	14.10.24	First release

2 Basic interface concepts

The command interface for the 2D Horizontal Profiler is ASCII based and line oriented. Before diving into the chapters covering data formats and commands, the operational modes and how to change between the modes are described. Understanding the use and constraints of the modes is important as they are used frequently when communicating with the instrument.

2.1 Modes

The instrument operates in distinct modes. These modes have several explicit commands used to control the instrument. The majority of the commands are initiated from the Command mode. The possible modes for the instrument are:

Command: Command and control
 Data Retrieval: Data download from recorder
 Measurement: Data collection mode

• Confirmation: Data collection mode

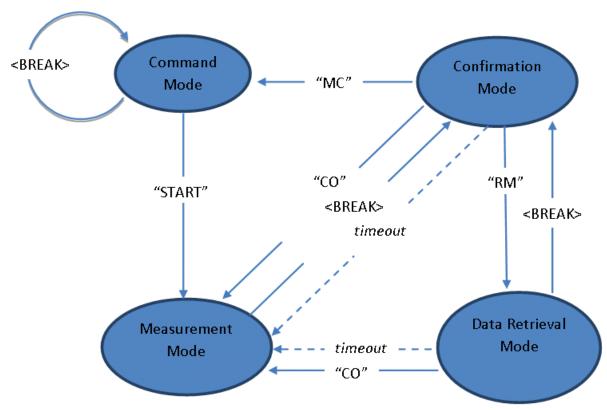
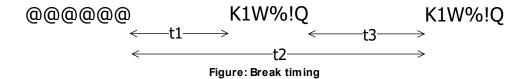


Figure 1: Instrument modes of operation

Initializing communication with the instrument is performed by sending a **SREAK**, which is defined in the next section. The **SREAK** will either set the instrument in Confirmation Mode or restart Command Mode. The options for changing mode depends on the present mode of the instrument (see Figure 1). The timeout shown in the diagram occurs if no commands are received in the various modes. A timer will then ensure that instrument operation continues. The timeout value in the Confirmation and Data Retrieval Modes is 60 seconds. There is also a timeout in Command Mode when operating over the serial interface. If no commands are received for 5 minutes, the instrument will go into sleep mode and a break or a sequence of @@@@@@@ must be sent to wake up the processor.


2.2 Break

<BREAK> over the serial interface is defined as:

@@@@@@ <delay 150 milliseconds> K1W%!Q <delay 400 milliseconds> K1W%!Q

The @@@@@@ are used to wake up the processor when it is in sleep mode since the instrument will only be able to monitor activity on the serial line when it sleeps. The second sequence of the actual break characters is there to ensure that a break is detected even when the instrument is waking up due to some other cause (e.g. alarm from the real time clock). This ensures that the processor will interpret the following command correctly.

The figure and the table below show the specified timing of the **<BREAK>** sequence:

Symbol	Parameter	Min.	Typical	Max.	Unit
t1	Time from end of @-sequence to start of <i>first</i> K1W%!Q-sequence.	100	150		ms
t2	Time from end of @-sequence to start of second K1W %!Q-sequence.	500	1000	2000	ms
t3	Time between <i>first</i> and <i>second</i> K1W%!Q-sequence.	300	400		ms

2.3 Dual Processor

The 400 kHz 2D Horizontal Profiler uses a two-processor (DSP) design; one dedicated to Doppler processing (BBP) and the other to Interface (SEC). The primary interface is ethernet, so the interface processor is only powered when external power is applied. Note that powering through the ethernet cable will also power the rest of the electronics. As the primary interface, the ethernet cable takes priority, so if it is powered while the serial interface is also powered, you will only be able to use ethernet for communications and data output.

Note that this only applies for the 400 kHz instrument. The 1MHz 2D Horizontal Profiler only has serial interface for communication.

3 Telemetry

Our use of the telemetry term implies a "subset transfer system", that is, storing a subset of data for transfer over low-bandwidth links (for example over Iridium links, acoustic modems, etc.). The telemetry file is typically used in cases where the integrator either does not have the processing power or bandwidth (if only a low data rate serial port is available) to do the processing themselves.

For online data transmission a versatile scheme for telemetry options is available. The telemetry file can be read out over the serial interface either in chunks or as a complete file while checksum or CRC on the

downloaded data can be applied in a configurable manner. This enables external controllers to configure separate handling of all, or a subset, of the measured data. That means the file can be output directly as they are ready, or the data can be stored to a telemetry file for later retrieval. The data format can be selected from a number of formats, including both binary and ASCII data formats.

The raw data, by design, is not supposed to be deleted from the disk while the instrument is still measuring. The raw data is collected and saved continuously throughout the deployment and the configuration is supposed to be set up in such a way that there is sufficient disk space to last for the whole deployment period. The raw data is then taken off the disk after the deployment and post-processed as required.

FTP

For the 400 kHz instrument, which can communicate over ethernet, the telemetry option implemented in the Doppler processor enables system integrators to regularly offload subsets of the data by using FTP. When the network processor receives an incoming FTP request, it will interrupt the Doppler processor by entering Data Retrieval Mode and mount the file system of the recorder. The data files on the recorder can then be accessed over FTP. The telemetry file can be deleted after it has been downloaded, which is particularly suitable for event driven data downloads. If the instrument was started with the DEPLOY command, it will resynchronize to its measurement time base after the FTP session has ended.

4 Serial Operation

The 400 kHz 2D Horizontal Profiler can use serial communications with either RS232 or RS422 communication protocol. The serial cable that follows the instrument can be used for both and you switch between the two with the SETINST command. Note that a different converter is needed between the two options.

The 1 MHz 2D Horizontal Profiler comes with RS422 as communication protocol as default. The communication protocol should not be changed to RS232 without consulting your local Nortek office.

5 Ethernet Operation

Please note that only the 400 kHz instrument has ethernet communication. For the 1 MHz instrument, all communication needs to be done over serial.

The instrument uses TCP (transmission control protocol) for both command processing and data transmission. The Internet Protocol uses a combination of the IP address and port to uniquely identify a communications channel between two computers. Different ports represent different means of communicating with the instrument. TCP ports 9000, 9001, 9002, and 9004 are assigned for the following uses:

- Port 9000 is a telnet-protocol ASCII interface (require username / password authentication)
- Port 9001 is a raw (binary) interface (requires username / password authentication)
- Port 9002 is a data only channel (no input accepted)
- Port 9004 is an ASCII data only channel (no input accepted).

Password authentication can be enabled/disabled when you access the instrument through a web browser by typing in its IP address. If the password authentication is disabled (which is default settings

for new instruments) the password entry will be ignores so that any input, including an empty password is accepted.

Commands that only are available in measurement mode should be preceded by the command **BBPWAKEUP**. This ensures that the BBP is ready to process the command when it is received. In measurement mode, another **BBPWAKEUP** must be sent when more than 2 seconds has elapsed since the previous command. If uncertain of the active mode it is good practice to send **BBPWAKEUP** before sending **GETSTATE** or **INQ**.

5.1 Telnet Connection

The telnet interface (TCP/IP port 9000) is used for user interaction with the instrument. This dedicated port can be used for entering commands and getting human readable responses (ASCII). The supported command set is available in the Commands section. The Windows telnet client can be used to connect to the instrument using the command line: "telnet [ip address] 9000". You will get prompted for a username (nortek) and password (leave blank and hit Enter if password authentication hasn't been enabled via the web interface).

Signature Username: nortek

Password:

Nortek Signature Command Interface

The interface is very similar to the direct serial interface over RS232/RS422 but some additions are made to simplify the interfacing. Most notable is the ability to send a <BREAK> to the Doppler processor just by using **Ctrl-C** (ASCII 0x03). The internal application takes care of waking up the Doppler DSP and timing the delivery of the break string.

The telnet server is not configured to echo characters, so users wishing to see and/or edit commands before sending them to the instrument should enable local echo and local line editing. If those features are desired, a telnet client capable of supporting local echo and local line editing must be used (e.g. PuTTY).

To terminate the telnet connection, enter Ctrl-X (ASCII 0x18).

Port 9000 is dedicated for ASCII only communication whereas the ports described in the next section provide the complete set of data, including binary output of the measurements. A telnet client should *not* be used to access these ports. Read more about this in the next section.

5.2 Raw Connections

A port can be understood as a address point between two communicating parts. When first connecting to a data listening port, the string "\r\nNortek [name] Data Interface\r\n" (where [name] is replaced by the instrument host name) is sent to identify the instrument that has responded to the connection request. TCP ports 9001, 9002 and 9004 are assigned for the following uses:

• Port 9001 is used for machine driven control. This port requires username/password. The serial port data is translated directly into TCP/ IP over Ethernet. Binary data generated in measurement mode is visible on this port. Standard streaming record delineation techniques must be used in order to make sure that the received data is properly synchronized for decoding. A break can be sent by sending the string K1W%!Q<CR><LF> to the instrument or a Ctrl-C character (ASCII 0x03) (Ctrl-C has to be sent on its own and not embedded in any command). The internal application takes care of the appropriate timing of the break sent over the internal serial port.

- Port 9002 is a data only channel which will output all data that is configured for a telemetry file with serial output. This can, for example, be used by display only software while configuration is done by another application.
- Port 9004 outputs ASCII data (no binary) that is configured for serial output. The instrument should be configured to output a telemetry file with serial output enabled in ASCII format.

A telnet client should *not* be used to access these ports. Telnet incorporates its own binary protocol which is neither interpreted nor sent via the raw connection. Using a telnet client on these ports will result in extraneous characters being sent and certain binary characters being interpreted by the client.

5.3 FTP

The internal data recorder is accessed over Ethernet using a standard FTP (File Transfer Protocol) client. Together with the various telemetry options, the FTP data download serves as a simple way to download measured data at regular intervals if true real time operation is not required. Only the telemetry file can be deleted using FTP.

When an FTP connection is active, the internal state of the instrument is changed so that commands are no longer processed (and an error is returned when commands are entered). Terminating the FTP connection or sending a **<BREAK>** followed by the **CO** command will switch the instrument back to the mode it was in before the FTP session began. If a break command is sent while an FTP transaction is in progress, the FTP connection will be forcibly terminated.

If an FTP connection is done when the instrument is in Measurement Mode (see <u>Modes diagram</u>), the FTP connection is made through Data Retrieval Mode. When the FTP connection is terminated, the instrument will then return to Measurement Mode. If no data is transferred or no FTP commands sent for 120 seconds, the FTP connection will terminate and the instrument will return to Measurement Mode.

5.4 HTTP

HTTP (Hypertext Transfer Protocol) can also be used for data transmission. For organizations with strong security/firewall restrictions, FTP access to the instrument may not be permitted. For that reason, a web page allowing individual data files to be downloaded has been implemented in the Ethernet processor. The web page can be accessed by clicking on the "Data Download (HTTP)" link from the main web page.

5.5 UDP

UDP (user datagram protocol) can also be used for data transmission. When using UDP, the data collection software simply waits for data to be sent from the instrument without having to establish a connection first. This may be useful for cases in which instrument power is intermittently interrupted and re-connecting to the instrument is not desirable. One downside to UDP communications is that transmission of the data is not guaranteed. On a noisy/error-prone connection, it is possible that the occasional datagram may be dropped. If every data record must be received, then TCP is recommended.

In order to use UDP in a power-safe configuration, the IP address of the data collection software and port must first be configured using the web interface. The IP address identifies the client to which the data is to be sent, and the port may be used to uniquely identify the instrument to the application. The port must be between 9000 and 9500. The same port may be used for all instruments if the data collection software examines the IP address of the received datagram to identify the instrument. Once this information has been configured, the Ethernet processor will automatically send real-time data records to the configured

address/port. An instrument in Measurement Mode re-enters Measurement Mode shortly after a power-cycle, so the data collection software will immediately receive new data without having to re-establish a connection.

5.6 PTP/NTP

Precision Time Protocol (IEEE-1588) is a standard used for distributing a high-resolution absolute time throughout an Ethernet network. The Signature series instrument can be configured to act as a slave to an existing PTP master clock (customer supplied) located in the same Ethernet LAN. The instrument contains a high-resolution clock which is synchronized and conditioned using PTP when enabled. The timestamps contained within the data records are then generated from this clock. When synchronized, these timestamps are typically aligned to within ~10 microseconds.

The PTP master clock must use UDP (layer three) and be configured for two-step operation with an end-to-end delay mode in order to be compatible with the Signature series PTP implementation. Using PTP does not affect the choice of UDP or TCP for the transport of data.

Network Time Protocol provides time sync typically to within +-1 ms on a local area network and +-10ms across a wide area network. The NTP Server IP address must be correctly configured for NTP to operate.

PTP/NTP is enabled on the SEC processor from the Signature web interface.

6 Commands

This chapter covers the commands that can be used to control an 2D Horizontal Profiler instrument. Please note that not every command is relevant for every instrument. The commands relevant for your specific instrument depends on the instrument type and licenses.

Some pointers:

• A configuration of the instrument should always start with setting the default configuration,

```
SETDEFAULT, CONFIGOK
```

• All command parameters should be set explicitly, e.g.:

```
SETAVG, NC=10, BD=0.7
OK
```

• Sometimes you may get an ERROR response after tying to save the configuration or start/deploy the instrument. This doesn't necessarily mean that something is wrong with the instrument, but is most often a sign that the configuration isn't going to work. Any ERROR response can be interrogated with **GETERROR**, e.g.:

```
SAVE, CONFIG

ERROR

GETERROR

GETERROR, NUM=56, STR="Invalid setting: Avg Average Interval too low for the configured number of pings and profiling distance", LIM="GETAVG1LIM, AI=([360;1800])"

OK
```

Here, the instrument is reporting that we have set the average interval to be too short, and it provides the limits for the AI that are allowed if we are going to keep the same number of pings and profiling distance. You could increase the average interval, decrease the number of pings, or decrease the profiling distance (i.e. number/size of cells) to fix the error.

Data Limit Formats

The limits for the various arguments are returned as a list of valid values, and/or ranges, enclosed in parenthesis (). An empty list, (), is used for arguments that are unused/not yet implemented. Square brackets [] signify a range of valid values that includes the listed values. String arguments are encapsulated with "", like for normal parameter handling. A semicolon, ;, is used as separator between limits and values.

The argument format can also be inferred from the limits, integer values are shown without a decimal point, floating point values are shown with a decimal point and strings are either shown with the string specifier, "", or as a range of characters using " for specifying a character.

Examples:

[1;128] – Integer value, valid from 1 to 128

([1300.00;1700.00];0.0) – Floating point value, valid values are 0.0 and the range from 1300.00 to 1700.00.

(['0';'9'];['a';'z'];['A';'Z'];'.') – String argument with valid characters being . and the character ranges a-z, A-Z, 0-9 .

("BEAM") – String argument with BEAM being the only valid string.

(0;1) – Integer value with two valid values, 0 and 1.

NMEA interface example:

```
$PNOR, GETAVGLIM*22

$PNOR, GETAVGLIM, NC=([1;128]), CS=([0.25;2.00]), BD=([0.10;45.00]), CY=("BEAM"), PL=([-40.0;0.0];-100.0), AI=([1;300]), VP=([0.000;0.100]), VR=([1.25;5.00]), DF=([0;3]), NPING=([1;4])*46

$PNOR, OK*2B
```

Regular interface example:

```
GETPLANLIM
([1;3600]),(0;1),(),([0;2]),(),([0.0;50.0]),(0;1),([10;21600]),(),
([1300.00;1700.00];0.0),(['0';'9'];['a';'z'];['A';'Z'];'.'),(0;1)
OK
```

6.1 List of Commands

Below is a list of all available commands with a short description and information about which mode they can be used in. For more information about each command see the following chapters. The arguments that can be used with each command are described in the respective chapter. Note that some of the commands requires at least one argument to be used.

Command	Description	Mode
SETINST	Set instrument main settings	COMMAND
GETINST	Get instrument main settings	COMMAND
GETINSTLIM	Set instrument main setting limits	COMMAND
SETCLOCK	Set instrument clock	COMMAND RETRIEVAL
GETCLOCK	Get instrument clock	COMMAND RETRIEVAL
SETCLOCKSTR	Set instrument clock as string	COMMAND RETRIEVAL
GETCLOCKSTR	Get instrument clock as string	COMMAND RETRIEVAL
SETPLAN	Set deployment plan parameters	COMMAND
GETPLAN	Get deployment plan parameters	COMMAND
GETPLANLIM	Get deployment plan parameter limits	COMMAND
SETAVG	Set instrument average mode settings	COMMAND
GETAVG	Get instrument average mode settings	COMMAND
GETAVGLIM	Get instrument average mode limits	COMMAND
GETMEM	Get recorder data memory usage	COMMAND
GETPWR	Returns the power consumption in mW for the various measurements enabled as well as the overall value	COMMAND
GETPRECISION	Returns the precision for primary plan	COMMAND
GETPRECISION1	Returns the precision for secondary plan	COMMAND
SETUSER	Set instrument user settings	COMMAND
GETUSER	Get instrument user settings	COMMAND
GETUSERLIM	Get instrument calibration parameter limits	COMMAND
ID	Get instrument Id	COMMAND
SETDEFAULT	Reload default settings	COMMAND
SAVE	Save settings for next measurement	COMMAND
DEPLOY	Deploy the instrument	COMMAND

MC RM Go into data retrieva CO Go into measuremen FWRITE Write tag or string to POWERDOWN ERASE Erase all files on the FORMAT FORMAT FORMAT FORMAT SECREBOOT LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum GETSTATE Returns information	al mode nt mode	CONFIRMATION CONFIRMATION CONFIRMATION RETRIEVAL COMMAND
FWRITE Write tag or string to POWERDOWN Set instrument in sle ERASE Erase all files on the FORMAT Format the recorder SECREBOOT Reboots the SEC LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum	nt mode	CONFIRMATION RETRIEVAL
FWRITE Write tag or string to POWERDOWN Set instrument in sle ERASE Erase all files on the FORMAT Format the recorder SECREBOOT Reboots the SEC LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum		RETRIEVAL
POWERDOWN ERASE Erase all files on the FORMAT Format the recorder SECREBOOT LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum	file	COMMAND
ERASE FORMAT FORMAT SECREBOOT LISTFILES DOWNLOAD Read file data INQ Inquires the instrum		CONFIRMATION RETRIEVAL
FORMAT SECREBOOT Reboots the SEC LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum	eep mode	COMMAND
SECREBOOT LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum	recorder	COMMAND
LISTFILES Lists the files on inst DOWNLOAD Read file data INQ Inquires the instrum		COMMAND
DOWNLOAD Read file data INQ Inquires the instrum		COMMAND
INQ Inquires the instrum	trument	COMMAND RETRIEVAL
		COMMAND RETRIEVAL
GETSTATE Returns information	ent state	COMMAND CONFIRMATION RETRIEVAL MEASUREMENT
operational state of	about the current the instrument	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
GETERROR Returns a full description to occur	ption of the last error	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
GETALL Retrieves all relevan for the instrument	nt configuration information	COMMAND
RECSTAT Return recorder stat	e	COMMAND RETRIEVAL
	ns configuration limits that through the relevant	COMMAND
GETXFAVG Returns the "Beam t average measureme	o XYZ" transfer matrix for ents	COMMAND
GETXFBURST Returns the "Beam to burst measurements	o XYZ" transfer matrix for	COMMAND
SETTMAVG Set averaging mode		<u></u>

GETTMAVG	Get averaging mode telemetry settings	COMMAND
GETTMAVGLIM	Get instrument averaging mode limits	COMMAND
DOWNLOADTM	Read telemetry file data	COMMAND RETRIEVAL
STOREHEADERTM	Stores the GETALL to the telemetry file	COMMAND
ERASETM	Erase the telemetry file	COMMAND RETRIEVAL
TAG	Write a Tag to output file and data output	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
PTPSET	Set precision time protocol parameters	COMMAND
PTPGET	Get precision time protocol parameters	COMMAND
BBPWAKEUP	Wakes up the Doppler processor (ethernet interface only)	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
GETHW	Returns hardware specifications	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
ADDLICENSE	Add license key	COMMAND
DELETELICENSE	Delete license key	COMMAND
LISTLICENSE	Lists all license keys in instrument	COMMAND

6.2 Instrument main settings

Commands: SETINST, GETINST, GETINSTLIM,

Command type: CONFIGURATION

Mode: COMMAND

Instrument main settings

Argument	Description
BR	Baud Rate 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 625000, 1250000 Unit: [bit/s]
RS	Serial protocol Note that Aquadopp Generation 2 by default is delivered with RS422 and should not be changed to RS232 without consulting your local Nortek office.

	232, 422
LED	Enable/disable LED blink in head. When set to "ON24H" the LED will illuminate the first 24 hours of the measurement. "OFF": Turn LED Off "ON": Turn LED On "ON24H": Turn LED On for 24 hours
ORIENT	Sets the instrument orientation. Not used for DVL. "AUTOXUPDOWN": Auto X up/down "AUTOYUPDOWN": Auto Y up/down "AUTOZUPDOWN": Auto Z up/down "ZUP": Z up "ZDOWN": Z down "XUP": X up "XDOWN": X down "YUP": Y up "YDOWN": Y down "AHRS3D": The instrument will detect and change the orientation as the instrument is moved. Used if the instrument has an AHRS installed and does not have a constant defined UP direction
СМТОИТ	Command mode timeout Unit: [s]
DMTOUT	Data retrieval mode timeout Unit: [s]
CFMTOUT	Confirmation mode timeout Unit: [s]

SETINST

Set instrument main settings

Example:

SETINST, BR=57600

GETINST

Get instrument main settings

Example:

GETINST, BR=460800, RS=232, LED="ON", ORIENT="AUTOZUPDOWN", CMTOUT=300, DMTOUT=60, CFMTOUT=60

GETINSTLIM

Set instrument main setting limits

6.3 Clock settings

Commands: SETCLOCK, GETCLOCK, Command type: CONFIGURATION Mode: COMMAND, RETRIEVAL

Instrument Real Time Clock specified in date parts

Argument	Description
YEAR	The year, e.g. 2020 Values: [0; 9999]
MONTH	The number of month 1-12 (Jan = 1) Values: [1; 12]
DAY	The number day of month 1-31 Values: [1; 31]
HOUR	The hour of day 0-23 Values: [0; 23]
MINUTE	The minute of hour 0-59 Values: [0; 59]
SECOND	The second of minute 0-59 Values: [0; 59]

Note: Note that all parameters must be set when using the set command

SETCLOCK

Set instrument clock

Example:

SETCLOCK, YEAR=2020, MONTH=11, DAY=28, HOUR=13, MINUTE:15, SECOND=45

GETCLOCK

Get instrument clock

Example:

GETCLOCK 2022,12,13,15,24,33 OK

6.4 Clock settings as strings

 $\textbf{Commands:} \ \mathsf{SETCLOCKSTR}, \ \mathsf{GETCLOCKSTR},$

Command type: CONFIGURATION Mode: COMMAND, RETRIEVAL

Set or retrieve the Real Time Clock using a string. Must use the format as shown: yyyy-MM-dd

HH:mm:ss

Argument	Description
TIME	Text string with this format yyyy-MM-dd HH:mm:ss (use UTC)

SETCLOCKSTR

Set instrument clock as string

Example:

SETCLOCKSTR, TIME="2020-11-12 14:27:42"

GETCLOCKSTR

Get instrument clock as string

Example:

GETCLOCKSTR

GETCLOCKSTR, TIME = "2014-11-12 14:27:42"

6.5 Deployment plan parameters

Commands: SETPLAN, GETPLAN, GETPLANLIM,

Command type: CONFIGURATION

Mode: COMMAND

Set and get high-level plan configuration settings.

Argument	Description
MIAVG	Averaging measurements interval Unit: [s]
AVG	Enable averaging measurements
VD	Vertical direction

SA	Salinity. Unit: [ppt]
BURST	Enable(1)/disable(0) burst measurements.
MIBURST	Burst measurements interval. Unit: [s]
SV	Sound velocity. SV = 0 will set sensor to use measured sound velocity Unit: [m/s]
FN	Filename of the raw data file where all the measured binary data will be stored. If FN="", no data is stored on the recorder. FN must be changed if a file FN with a different configuration already exists on the recorder. Values: ['a'; 'z']; ['A'; 'Z']; ['0'; '9']; '_'; '.' Max Length: 30
so	Enable(1)/disable(0) serial output
FREQ	Transmit frequency. This is normally the instruments (one) frequency. In the case of the Signature 55 we may choose between 55Hz or 75Hz. Unit: [khz]
NSTT	Number slot time table. Set to 0 giving the default number of slots

Note: The valid range for the various arguments should be verified using the GETPLANLIM command, as the values listed here may change with firmware versions and instrument frequencies.

SETPLAN

Set deployment plan parameters

Example:

SETPLAN, FREQ=75

GETPLAN

Get deployment plan parameters

GETPLANLIM

Get deployment plan parameter limits

6.6 Average mode settings

Commands: SETAVG, GETAVG, GETAVGLIM,

Command type: CONFIGURATION

Mode: COMMAND

The instrument averaging mode settings and relevant limits.

Argument	Description
NC	Number of cells
CS	Cell size Unit: [m]
BD	Blanking distance Unit: [m]
СУ	Co-ordinate system BEAM, XYZ, ENU
PL	Power level (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). Unit: [dB] Values: [-20; 0]; -100
AI	Average interval Unit: [s]
VR	Velocity range along beam Unit: [m/s]
NPING	Number of pings
NB	Number of beams
СН	Beam selection. E.g. CH=123 will enable beams 1, 2 and 3.
MUX	Multiplexor Selection (0, 1). Note: Multiplexing is only available for Signature 250, 100, and 55. 0: ping all beams in parallel 1: ping beams in sequence
BW	Bandwidth selection. NARROW, BROAD
ALTI	Enable(1)/disable(0) altimeter measurements
ВТ	Enable(1)/disable(0) bottom tracking
ICE	Enable(1)/disable(0) ice tracking
ALTISTART	Altimeter start Unit: [m]
ALTIEND	Altimeter start Unit: [m]
RAWALTI	Raw altimeter recording interval
DF	Data format 7: DF7 Binary v7
ZCELL	Enable(1)/disable(0) Z cell measurements

Note: The actual valid range for the various parameters for the firmware version is used can be found by using the GETAVGLIM command. This command has the same arguments as the SETAVG/GETAVG commands shown in the list above. The output format for limits is described in Data Limit Formats

SETAVG

Set instrument average mode settings

Example:

SETAVG, ALTIEND=20

GETAVG

Get instrument average mode settings

GETAVGLIM

Get instrument average mode limits

6.7 Get memory usage

Command: GETMEM Command type: INFO Mode: COMMAND

Returns the amount of memory that will be stored on the recorder per hour for the burst and average data as well as the combined plan value. Alternate mode values is also supported.

Argument	Description
PLAN	Combined burst and average memory usage for primary plan Unit: [MB/h]
BURST	Burst memory usage for primary plan Unit: [MB/h]
AVG	Average data memory usage for primary plan Unit: [MB/h]
PLAN1	Combined burst and average memory usage for secondary plan Unit: [MB/h]
BURST1	Burst memory usage for secondary plan Unit: [MB/h]

AVG1	Average data memory usage for secondary plan Unit: [MB/h]
TOTAL	Total memory usage Unit: [MB/h]

Example:

GETMEM, TOTAL

6.8 Get power use

Command: GETPWR
Command type: INFO
Mode: COMMAND

Returns the power consumption in milliWatts for the various measurements enabled as well as the overall value. The plan values include the sleep mode power consumption in addition to the sum of average and burst mode values. The reported values are adjusted according to the input voltage to the system when the command is executed.

Argument	Description
PLAN	Combined power use on both burst and average sampling for secondary plan Unit: [mW]
BURST	Power use on burst data sampling for secondary plan Unit: [mW]
AVG	Power use on average data sampling for secondary plan Unit: [mW]
TOTAL	Total power use Unit: [mW]

Example:

GETPWR, TOTAL

6.9 Get measured precision

Commands: GETPRECISION, GETPRECISION1,

Command type: INFO Mode: COMMAND

Returns the precision in the horizontal plane and along the beam in cm/s for the various measurement modes.

Argument	Description
AVGHORZ	Precision in the horizontal plane in average mode

	Unit: [cm/s]
BURSTHORZ	Precision in the horizontal plane in burst mode Unit: [cm/s]
BEAM5	Precision in the vertical plane (beam 5) in burst mode Unit: [cm/s]
AVGBEAM	Precision along beam in average mode Unit: [cm/s]
BURSTBEAM	Precision along beam in burst mode Unit: [cm/s]

GETPRECISION

Returns the precision for primary plan

Example:

GETPRECISION, AVGHORZ

GETPRECISION1

Returns the precision for secondary plan

Example:

GETPRECISION1, AVGHORZ

6.10 Instrument user settings

Commands: SETUSER, GETUSER, GETUSERLIM,

Command type: CONFIGURATION

Mode: COMMAND

The SAVE, USER command must be sent to save changes in USER parameters.

Argument	Description
POFF	Set the offset value of the pressure sensor. Unit: [dbar] Values: [0; 11]
DECL	Magnetic declination. Unit: [deg]
НХ	Hard iron x-component. Unit: [Gauss]
НҮ	Hard iron y-component. Unit: [Gauss]

HZ	Hard iron z-component.
	Unit: [Gauss]

SETUSER

Set instrument user settings

Example:

```
SETUSER, POFF=4.5, DECL=1.4, HX=100, HY=100, HZ=100 OK SAVEUSER OK
```

GETUSER

Get instrument user settings

GETUSERLIM

Get instrument calibration parameter limits

6.11 Get instrument ID

Command: ID

Command type: INFO Mode: COMMAND

Commands for accessing instrument name and serial number

Argument	Description
STR	Instrument name Values: '_'; '.' Max Length: 64
SN	Serial number Values: [0; 2147483647]

Example:

```
ID
"Signature1000",900002
ID,STR
"Signature1000"
```

6.12 Reload default settings

Command: SETDEFAULT Command type: ACTION Mode: COMMAND

Reload default settings.

Argument	Description
CONFIG	Restore all settings below except USER and INST to default values. Legacy argument ALL acts as CONFIG.
AVG	Restore average mode settings to default.
INST	Restore instrument main settings to default.
TMAVG	Restore telemetry average settings to default.
PLAN	Restore plan settings to default.
BURST	Restore burst settings to default.
PTP	Restore precision time protocol to default.
ВТ	Restore bottom track settings to default.
USER	Restore user calibration to default.
TMBURST	Restore telemetry burst to default.
TMALTI	Restore altimeter telemetry settings to default.
DVL	Restore DVL settings to default.

Example:

SETDEFAULT, CONFIG

6.13 Save settings

Command: SAVE

Command type: ACTION Mode: COMMAND

Save current settings for next measurement. At least one argument must be specified for the SAVE command.

Argument	Description
CONFIG	Save all settings except INST and USER settings. Legacy argument ALL acts as CONFIG.
AVG	Save AVG settings.
INST	Save INST settings.
TMAVG	Save telemetry average settings.

PLAN	Save plan settings.
BURST	Save burst settings.
PTP	Save precision time protocol settings.
TMBT	Save telemetry bottom track settings.
USER	Save user instrument settings.
TMBURST	Save telemetry burst settings.
TMALTI	Save altimeter telemetry settings.
DVL	Save DVL settings.

Example:

SAVE, CONFIG

6.14 Deploy instrument

Command: DEPLOY
Command type: ACTION
Mode: COMMAND

Deploy the instrument. Start the measurement at the time specified in the string argument. The format must be exactly as shown. If no time value is passed, the deployment will start immediately.

The number of seconds to the specified deployment time is returned.

The DEPLOY command will save the configuration as well as deploying the instrument, as if a SAVE, CONFIG command were sent.

Argument	Description
TIME	yyyy-MM-dd HH:mm:ss

Note: The difference between DEPLOY and START is that the latter will immediately start a measurement any time the instrument state returns to Measurement mode such as by applying power or timeout from Data Retrieval Mode. If DEPLOY is used, be aware that if the deployment time has passed when the battery is connected, the instrument will resynchronize its data sampling according to the deployment time and the instrument configuration. This means you may have to wait for one average measurement interval or one burst measurement interval before the instrument starts to ping.

Example:

DEPLOY, TIME="2020-12-18 15:30:00" 592 OK

6.15 Start instrument

Command: START

Command type: ACTION Mode: COMMAND

Start the instrument (go in measurement mode). Specify the order of the alternating plans by using the PLAN argument.

Note that the START command will save the configuration as well as starting the measurement, as if a SAVE, CONFIG command were sent.

Argument	Description
	Select plan to start 0: Plan
	1: Plan1

Example:

START, PLAN=0

6.16 Enter command mode

Command: MC

Command type: ACTION Mode: CONFIRMATION

Sets instrument in command mode from confirmation mode.

Example:

MC

6.17 Data retrieval mode

Command: RM

Command type: ACTION Mode: CONFIRMATION

Go into data retrieval mode from confirmation mode and access the instruments recorder.

Example:

RM

6.18 Enter measurement mode

Command: CO

Command type: ACTION

Mode: CONFIRMATION, RETRIEVAL

Continue in measurement mode from confirmation mode or data retrieval mode. Instrument returns to collecting data according to the current configuration.

Example:

CO

6.19 Write to file

Command: FWRITE
Command type: ACTION

Mode: COMMAND, CONFIRMATION, RETRIEVAL

Write tag or string to file

Argument	Description
FNUM	File identifier for telling which file the info is written to. Default is 0. 0: File defined in the PLAN command 1: Telemetry file Default: 0
ID	Identifier. Tell the parser how to interpret the string. Default value: 0 0: Comment 1: Dive location 2: Surface location Default: 0
STR	String. Max Length: 200

Note: Fwrite STR and B64STR cannot be set together.

Example:

FWRITE, FNUM=1, STR="ABCDEF"

6.20 Power down

Command: POWERDOWN
Command type: ACTION
Mode: COMMAND

Power down the instrument to set it in sleep mode.

Example:

POWERDOWN

6.21 Erase files on recorder

Command: ERASE
Command type: ACTION
Mode: COMMAND

Erase all files on the recorder

Argument	Description
CODE	Code should be 9999
	9999

Example:

ERASE, CODE=9999

6.22 Format recorder

Command: FORMAT
Command type: ACTION
Mode: COMMAND

Format the recorder. Note that this can take minutes depending on the recorder size.

Argument	Description
CODE	Code should be 9999
	9999

Example:

FORMAT, CODE=9999

6.23 SEC reboot

Command: SECREBOOT Command type: ACTION Mode: COMMAND

This command is only relevant for the 400 kHz instrument

Reboots the SEC (Interface processor). This command makes it possible to reboot the SEC without going via the web interface.

Argument	Description
CODE	Code should be 9999 9999

Example:

SECREBOOT, CODE=9999

6.24 List files

Command: LISTFILES Command type: INFO

Mode: COMMAND, RETRIEVAL

Lists the files stored on the instrument recorder.

Argument	Description
ОРТ	Amount of file information to list. "normal": Normal file info. "la": Lists extended information.

Example:

LISTFILES, OPT="NORMAL"

6.25 Download

Command: DOWNLOAD
Command type: ACTION
Mode: COMMAND, RETRIEVAL

This command reads a file from the recorder to the terminal window.

Argument	Description
FN	Filename Values: ['a'; 'z']; ['A'; 'Z']; ['0'; '9']; '_'; '.' Max Length: 30
SA	Start address (offset) of the first byte to be returned
LEN	Number of bytes to be downloaded
CRC	Use Cyclic redundancy check
CKS	Use Checksum

Note: If no parameters other than the file name are sent with the DOWNLOAD command, the complete file is directly returned, without the number of bytes to follow. The end of the file can then be detected by parsing the OK<CR><LF>.

The parameters can be used to download the file in several pieces. The number of bytes to follow will then be returned in ASCII format and terminated with <CR><LF> before the data is output. The end of the file stream is terminated with OK<CR><LF>. A cyclic redundancy check or a checksum will then be added to verify data integrity during download. The complete file can also be

downloaded in this way by specifying SA=0 and a large value for LEN. The actual file size is then returned before the data follows.

Example:

```
DOWNLOAD, FN="TestFile.ad2cp", SA=0, LEN=4096, CRC=1, CKS=0 4096 

<br/>
<br/>
dinary or ASCII data> 23432 

OK
```

6.26 Inquire state

Command: INQ Command type: INFO

Mode: COMMAND, CONFIRMATION, RETRIEVAL, MEASUREMENT

The INQ command queries the instrument state. Note that when operating over RS232 or RS422 serial lines, it should be preceded with @@@@@@ <delay 400ms> and a flush of the input buffer in case the instrument is in power down or in a low power mode taking measurements.

Consult section "Modes" for a description of the Instrument modes.

Note: Parameters used to represent instrument mode:

0000: Bootloader/Firmware upgrade

0001: Measurement

0002: Command

0004: Data Retrieval

0005: Confirmation

0006: FTP-mode

Example:

(In command mode)

INQ 0002

(In measurement mode)

INQ 0001

(In confirmation mode)

INQ 0005

(In data retrieval mode)

INQ 0004

0004

(In firmware upgrade mode)

INQ 0000

6.27 Get instrument state

Command: GETSTATE
Command type: INFO

Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Returns information about the current operational state of the instrument

Argument	Description
MODE	Current instrument state. 1: Measurement (START command received). 2: In command mode. 3: DEPLOY command received and deployment running. 4: Data retrieval. 5: Confirmation. 6: Network FTP. 8: DEPLOY command received, but deployment has not, yet started. 9: Confirmation in measurement mode. 10: Confirmation in deploy mode. 11: Confirmation in pre-deploy mode. 12: internal processing in progress.
DEPTIME	Seconds since deployment: 0 – DEPLOY command has not been received. < 0 – Number of seconds until deployment starts. > 0 – Number of seconds that deployment has been running. Unit: [s]
MEASTIME	Seconds with measurements: 0 – START command has not been received. > 0 – Number of seconds that measurement has been running. Unit: [s]
CURRTIME	The current instrument time. Time format is "YYYY-MM-DD HH:MM:SS" Unit: [Time]
WAKEUP	Reason for instrument wakeup. 0: Last startup/reboot caused by loss/low voltage. 1: Last startup/reboot caused by power on. 2: Last startup/reboot caused by BREAK command. 3: Last startup/reboot caused by Wakeup by Real time clock. 4: Last startup/reboot caused by WatchDog
INTPROC	Internal processing Active

Example:

GETSTATE, WAKEUP, CURRTIME

6.28 Get error

Command: GETERROR **Command type:** INFO

Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

GETERROR retrieves a full description of the last error condition to occur. The error number is returned first followed by a string with the text description of the last error condition. A second string is also returned which contains information on the valid range of the failing argument.

Argument	Description
NUM	Integer error value
STR	Text description
LIM	Valid limits as text

Example:

```
SETAVG, CS=2.5

OK

SAVE, CONFIG

ERROR

GETERROR

40, "Invalid setting: Avg Cell Size", "GETAVGLIM, CS=([0.20;2.00])"

OK
```

6.29 Get all

Command: GETALL
Command type: INFO
Mode: COMMAND

GETALL retrieves all relevant configuration information for the instrument. This information can either be displayed on the command line or saved to a data file on the instrument. For the Nortek post-processing software to read a valid Nortek file it must contain both the Header and Data Record. The Header information can be obtained by using the command GETALL.

Argument	Description
FN	Write the output to this file saved on instrument

Example:

```
GETALL
GETPLAN, 600, 1, 0, 0, 10, 0.0, 1, 0, 0, 1500, "", 1
GETAVG, 20, 1.00, 0.30, "BEAM", -12.0, 1, 0.000, 1.29, 3, 1, 0, 0
```

```
GETBURST, 50, 4, 0.400, 0.200, "BEAM", 0.0, 1, 1024, 4.00, 0.000, 0, 1, 0 GETUSER, 0.00, 0.00, 0, 0, 0 GETINST, 9600, 232, 1 BEAMCFGLIST, 1, 10.00, 20.00, 1000, 500, 1, 1 BEAMCFGLIST, 2, 10.00, 20.00, 1000, 500, 1, 2 BEAMCFGLIST, 3, 10.00, 20.00, 1000, 500, 1, 3 BEAMCFGLIST, 4, 10.00, 20.00, 1000, 500, 1, 4 OK
```

6.30 Get recorder state

Command: RECSTAT **Command type:** INFO

Mode: COMMAND, RETRIEVAL

Returns recorder state.

Argument	Description
SS	Number of bytes in a sector. Unit: [bytes]
CS	Number of bytes in one cluster. Unit: [bytes]
FC	Number of bytes in free clusters. Unit: [bytes]
тс	Total number of bytes in clusters. Unit: [bytes]
VS	Volume Size in bytes. Unit: [bytes]

Example:

RECSTAT, VS

6.31 Get configuration limits

Command: GETMISCLIM
Command type: INFO
Mode: COMMAND

Returns configuration limits.

Argument	Description
AVGPR	Returns the total profiling range for averaged measurements (SETAVG) Unit: [m]
BURSTPR	Returns the total profiling range for burst profile measurements (SETBURST)

Unit: [m]
Returns the total profiling range for burst HR profile measurements (SETBURSTHR) Unit: [m]

Note: The output format for limits is described in Data Limit Formats

Example:

GETMISCLIM, BURSTPR

6.32 Get transfer matrices

Commands: GETXFAVG, GETXFBURST,

Command type: INFO Mode: COMMAND

Returns the "Beam to XYZ" transfer matrix for the current setup. If the number of beams is 1 or 2, only ROWS and COLS are returned.

Argument	Description
ROWS	Number of rows
COLS	Number of rows
M11	
M12	
M13	
M14	
M21	
M22	
M23	
M24	
M31	
M32	
M33	
M34	
M41	
M42	
M43	
M44	

Note: Return is ROWS, COLS, M11, M12 ... M43, M44.

Cell indexes are: first number for row and second index for column.

GETXFAVG

Returns the "Beam to XYZ" transfer matrix for average measurements

Example:

GETXFAVG

GETXFBURST

Returns the "Beam to XYZ" transfer matrix for burst measurements

Example:

```
GETXFBURST
```

```
GETXFBURST, ROWS=4, COLS=4, M11=1.183, M12=0.000, M13=-
1.183, M14=0.000, M21=0.000, M22=1.183, M23=0.000, M24=-
1.183, M31=0.552, M32=0.000, M33=0.552, M34=0.000, M41=0.000, M42=0.552, M
43=0.000, M44=0.552

GETXFAVG, ROWS=3, COLS=3, M11=1.183, M12=0.000, M13=-
1.183, M21=1.183, M22=-2.366, M23=1.183, M31=0.552, M32=0.000, M33=0.552
```

6.33 Average mode telemetry settings

Commands: SETTMAVG, GETTMAVG, GETTMAVGLIM,

Command type: CONFIGURATION

Mode: COMMAND

The instrument averaging mode telemetry settings and relevant limits.

Argument	Description
EN	Enable averaging mode telemetry.
CD	Cells divisor.
PD	Packets divisor.
AVG	Number of seconds included in the telemetry average. If 0, no averaging is done and every ping will be outputted Unit: [s]
TV	Enable velocity output.
TA	Enable amplitude output
TC	Enable correlation output.

СҮ	Co-ordinate system. BEAM, XYZ, ENU
FO	Enable file output.
SO	Enable serial output.
DF	Telemetry data format. For examples, see Telemetry Data Format chapter.
DISTILT	Disable tilt.
TPG	Enable output of the Percentage Good value.
MAPBINS	Enable vertical bin mapping.

Note: It is recommended to enable TPG when averaging (AVG>0) is also enabled.

The actual valid range for the various parameters for the firmware version is used can be found by using the GETTMAVGLIM command. This command has the same arguments as the SETTMAVG/GETTMAVG commands shown in the list above. The output format for limits is described in Data Limit Formats.

SETTMAVG

Set averaging mode telemetry settings

Example:

SETTMAVG, EN=1, AVG=30

GETTMAVG

Get averaging mode telemetry settings

GETTMAVGLIM

Get instrument averaging mode limits

6.34 Download telemetry

Command: DOWNLOADTM
Command type: ACTION
Mode: COMMAND, RETRIEVAL

This command enables reading the telemetry file which can be created during measurement by using the appropriate SETTMxxx commands. The formats are described in the section detailing Data Formats.

Argument	Description
----------	-------------

SA	Start address (offset) of the first byte to be returned.
LEN	Number of bytes to be downloaded.
CRC	Use Cyclic redundancy check. CRC=1 enables CRC. CRC cannot be enabled when CKS=1.
CKS	Use Checksum. CKS=1 enables checksum. CKS cannot be enabled when CRC=1.

Note: If no parameters are sent with the DOWNLOADTM command the complete file is directly returned, without the number of bytes to follow. The end of the file can then be detected by parsing the OK<CR><LF>.

The parameters can be used to download the telemetry file in several pieces. The number of bytes to follow will then be returned in ASCII format and terminated with <CR><LF> before the data is output. The end of telemetry stream is terminated with OK<CR><LF>. A cyclic redundancy check or a checksum will then be added to be able to verify data integrity during download. The complete file can also be downloaded in this way by specifying SA=0 and a large value for LEN. The actual file size is then returned before the data follows. See also TMSTAT for retrieving file information.

Example:

DOWNLOADTM, SA=0, LEN=4096, CRC=1, CKS=0

dinary or ASCII data> 23432 (checksum/crc value) OK

6.35 Save configuration to file

Command: STOREHEADERTM Command type: ACTION Mode: COMMAND

This command stores the GETALL (complete configuration) to the telemetry file.

Example:

STOREHEADERTM

6.36 Erase telemetry file

Command: ERASETM
Command type: ACTION
Mode: COMMAND, RETRIEVAL

Erase the telemetry file.

Argument	Description
_	

CODE	Code should be 9999
	9999

Note: The telemetry file can also be erased over FTP.

Example:

ERASETM, CODE=9999

6.37 Write tag output

Command: TAG

Command type: ACTION

Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Write a Tag to output file and data output.

The TAG command adds a tag to the both the output file and the output data, if enabled. The output is a String Record as defined in the FWRITE command. The ID of the String Record Data packet is 19dec.

Argument	Description
STR	Tag string. Maximum 200 bytes.
CLK	Add clock in tag.

Note: Remember to use the BBPWAKEUP command when sending commands to an instrument in Measurement mode, when using Ethernet.

Example:

```
TAG, STR="This is a test tag.", CLK=1
a5 0a a0 10 2f 00 42 8c 42 5d 13 32 // Binary header
30 31 37 2d 30 31 2d 32 34 20 30 38 // String Record ID = 19dec
3a 34 32 3a 35 37 2e 34 34 39 20 2d // "2017-01-24 08:42"
20 54 68 69 73 20 69 73 20 61 20 74 // ":57.449 - This i"
65 73 74 20 74 61 67 2e 00 // "s is a test tag."
OK
```

6.38 Precision time protocol

Commands: PTPSET, PTPGET, **Command type**: CONFIGURATION

Mode: COMMAND

This command is only relevant for the 400 kHz instrument

Configure the precision time protocol parameters.

Argument	Description
EN	Choose a time protocol. 0: Time protocol disabled. 1: Use precision time protocol (PTP). 2: Use network time protocol (NTP).
OFFSET	Offset Unit: [μs]
CL	Time value representing the number of seconds elapsed since 00:00 hours, Jan 1, 1970 UTC Unit: [s]
IP	The numeric IP address of the NTP server to use for syncing

Note: For the case of NTP, the instrument is not capable of DNS name resolution. In order to retrieve the IP address associated with a name, use the "nslookup" tool from the computer command line

PTPSET

Set precision time protocol parameters

Example:

```
PTPSET, EN=0, OFFSET=0, CL=1609193402

OK

PTPSET, EN=2, IP="129.240.3.3"

OK
```

PTPGET

Get precision time protocol parameters

Example:

PTPGET, EN, OFFSET, CL

6.39 Wake Doppler processor

Command: BBPWAKEUP
Command type: ACTION

Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

This command is only relevant for the 400 kHz instrument

Commands available in measurement mode should be preceded by the command BBPWAKEUP. This ensures that the BBP is ready to process the command when it is received (see Checking

instrument state over Ethernet). In measurement mode, another BBPWAKEUP must be sent when more than 2 seconds has elapsed since the previous command.

If uncertain of the active mode it is good practice to send BBPWAKEUP before sending GETSTATE or INQ.

Example:

BBPWAKEUP

6.40 Get hardware specifications

Command: GETHW
Command type: INFO

Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Returns Firmware versions and Board revisions.

Argument	Description
FW	Running DSP FW version
FWMINOR	Running DSP FW version (minor part)
FPGA	Running FPGA FW version
BOOT	DSP bootloader FW Version
DIGITAL	Board revision. Example: C-0
INTERFACE	Board revision. Example: C-0
ANALOG	Board revision. Example: C-0
SENSOR	Board revision. Example: C-0

Example:

GETHW, FW, MINOR

6.41 Add license

Command: ADDLICENSE
Command type: PRODUCTION

Access: User
Mode: COMMAND

Reads a license key and checks it against the instrument serial number before adding it to the license key flash.

Argument	Description
KEY	The license key to add

Example:

```
ADDLICENSE, KEY="9H3F5PE47HUUB" OK
```

6.42 Delete license

Command: DELETELICENSE
Command type: PRODUCTION

Access: User
Mode: COMMAND

Deletes a license key from the license key flash.

Argument	Description	
KEY	The license key to delete	

Example:

```
DELETELICENSE, KEY="9H3F5PE47HUUB"
OK
```

6.43 Lists license keys

Command: LISTLICENSE Command type: INFO

Access: User
Mode: COMMAND

Lists all license keys contained in the license key flash along with a description of the functionality enabled by the key and the variant number of the license.

Argument	Description	
KEY	License key	
DESC	Information about license type	
TYPE	License id	

Example:

```
LISTLICENSE
LISTLICENSE, "4X218TRTRPNUB", "High Resolution", 4
LISTLICENSE, "JKHHFNH3RPNUB", "Wave Mode", 6
LISTLICENSE, "WF3CJR6PRPNUB", "Current Profiler", 1
OK
$PNOR, LISTLICENSE*76
$PNOR, LISTLICENSE, KEY="4X218TRTRPNUB", DESC="High Resolution", TYPE=4*73
$PNOR, LISTLICENSE, KEY="JKHHFNH3RPNUB", DESC="Wave Mode", TYPE=6*00
```

\$PNOR,LISTLICENSE,KEY="WF3CJR6PRPNUB",DESC="Current
Profiler",TYPE=1*1C
\$PNOR,OK*2B

7 Data Formats

This chapter describes the binary data formats for the 2D Horizontal Profiler. Note that the binary data formats all use a common header that specifies how the rest of the data block should be interpreted. A data block is the data from and including one header to the next. Binary data are always sent as Little Endian.

About these chapters

Each data format is described in the following chapters. To avoid duplicating rows in the following tables, we have documented header and common data separately. This way, the chapter on one data format will only contain the fields unique for this data format. Take DF3 velocity data as an example:

In short: The data format is the sum of header data, two parts that are shared with other types of data blocks, and the part that is unique for velocity. Se figure below.

A little longer: The header is the same for all data blocks. It is compact and quick to parse, and it contains information about the rest of the data (e.g. data type and size). This is documented separately as _HeaderData. We use the leading underscore to emphasize that this is a not a complete data format, but it is a part used by two or more data formats.

The same goes for other common data such as data format version number, offset to data and timestamp etc. This is documented separately in _CommonData. Note that for DF3 velocity data there is also another part that is shared.

Last, there are the unique fields such as beam configuration, velocity data, amplitude data etc. that is given in the table in VelocityDataV3.

The table below is an illustration on how common data fields (gray for header and blue for other common's) relate to the sensor specific data fields (green).

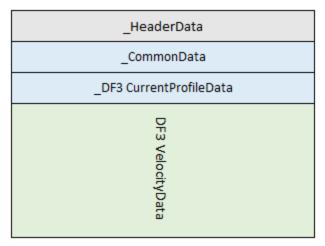


Figure: Showing how common data fields (gray for header and blue for other common's) relate to the sensor specific data fields (green). Note that we use a leading underscore (_) to emphasize that this is not a sensor data format but is common and used by two or more data formats.

About the tables

Tables have the columns 'Field', 'Position/Size' and 'Description'. Position and size may need an explanation:

Position has the location of a field in the header or in the data that follows the header. E.g., the 'data series id' has position 2 (Note that we are counting from 0) in the header. Some positions are not fixed, but dependent on which fields are before it. In these cases, 'offset of data' (position 1 of the data - see _CommonData) can then be used to give the position of the following fields. In these cases, the position in the table will not be given as a number but as a variable name such as OFFSET. Variable descriptions are listed below the tables where they are used.

Size is the data type of field. In case of 'data series id' it is an unsigned integer of 8 bits (uint8). Note that not all fields have a specific data type but is an object using a required number of bits. E.g., the status bit masks often use 32 bits to provide 'ok'/'not ok' on several parts of the data. These object sizes and their descriptions are listed below the table where they are used.

7.1 HeaderData

The header definition for binary data formats. Note that the header may be verified without reading the rest of the data block since it has its own checksum.

Field	Position Size	Description
Sync byte	0 uint8	Always 0xA5.
Header size	1 uint8	Number of bytes in the headers. Normally it is 10 bytes, but in a few cases it may be 12 bytes to hold

		data size of 32 bytes.
Data series id	2 uint8	Defines the type of the following Data Record. 0x15 - Burst data as DF3. 0x16 - Average data as DF3. 0x17 - Bottom Track Data Record. 0x18 - Interleaved Burst Data Record (beam 5). 0x1E - Altimeter Record. 0x1F - Avg Altimeter Raw Record. 0x1A - Burst Altimeter Raw Record. 0x1B - DVL Bottom Track Record. 0x1C - Echo Sounder Record. 0x23 - Echo Sounder Raw Record. 0x24 - Echo Sounder Raw Tx Record. 0x26 - Average data as DF7. 0x30 - Processed Wave Data Record. 0x1D - DVL Water Track Record. 0xC8 - Vector 2 data as DF8. 0xA0 - String Data Record, eg. GPS NMEA data, comment from the FWRITE command.
Family id	3 uint8	Defines the Instrument Family. 0x10 is the Signature Family. 0x30 is the Aquadopp Generation 2 family. 0x04 is the Awac Generation 2 family.
Data size	4 unit16/uint32	Number of bytes in the following Data Record. If header size is 10, the data size is represented with a uint16. For large datasets, header may have 12 bytes giving room for a uint32 to represent data size.
Data checksum	6/8 uint16	Checksum of the following Data Record.
Header checksum	8/10 uint16	Checksum of all fields of the Header except the Header Checksum itself.

7.2 _CommonData

Used By: _DF3 CurrentProfileData

Common data definitions for parsing Nortek data format 3 (DF3) and Nortek bottom track data format 20 (DF20).

Field	Position Size	Description
Version	0	Version number of the Data Record Definition.
	uint8	3 - DF3
		20 - DF20

Offset of data	1 uint8	Number of bytes from start of the record to start of the actual data. Unit: [# bytes]
Configuration bit mask	2 16 bits	Record Configuration Bit Mask Object reference given in table below
Serial number	4 uint32	Instrument serial number from factory.
Year	8 uint8	Number of years since 1900.
Month	9 uint8	Month number counting from 0 which is January.
Day	10 uint8	Day of the month
Hour	11 uint8	24 hour of the day
Minutes	12 uint8	Minutes.
Seconds	13 uint8	Seconds.
Hundred micro seconds	14 uint16	Hundred micro seconds from last whole second. Unit: [100 μs]
Speed of sound	16 uint16	Speed of sound used by the instrument. Raw data given as 0.1 m/s Unit: [m/s]
Temperature	18 int16	Reading from the temperature sensor. Raw data given as 0.01 °C Unit: [°C]
Pressure	20 uint32	Raw data given as 0.001 dBar Unit: [dBar]
Heading	24 uint16	Raw data given as 0.01 degrees Unit: [deg]
Pitch	26 int16	Raw data given as 0.01 degrees Unit: [deg]
Roll	28 int16	Raw data given as 0.01 degrees Unit: [deg]
Cell size	32 uint16	Size of each cell (resolution) on the beam. Raw data given as mm Unit: [m]
Nominal correlation	36 uint8	The nominal correlation for the configured combination of cell size and velocity range Unit: [%]

Battery voltage	38 uint16	Raw value given in 0.1 Volt Unit: [V]
Magnetometer.X	40 int16	X axis flux raw value in last measurement interval
Magnetometer.Y	42 int16	Y axis flux raw value in last measurement interval
Magnetometer.Z	44 int16	Z axis flux raw value in last measurement interval
Accelerometer.X	46 int16	Raw accelerometer X axis value in last measurement interval Raw value divided by 16384 will give vector [x,y,z] of length 1 Note: The unit of the instrument is gravity [g]. Conversion of Accelerometer unit less raw measurements to m/s^2: divide measurement by 16384, then multiply by calibrated gravity in Oslo, 9.819 m/s^2.
Accelerometer.Y	48 int16	Raw Y axis value in last measurement interval Raw value divided by 16384 will give vector [x,y,z] of length 1
Accelerometer.Z	50 int16	Raw Z axis value in last measurement interval. Raw value divided by 16384 will give vector [x,y,z] of length 1
Data set description	54/56 uint16	Data set description. 0-3 Physical beam used for 1st data set. 4-7 Physical beam used for 2nd data set. 8-11 Physical beam used for 3th data set. 12-16 Physical beam used for 4th data set.
Transmitted energy	56/58 uint16	Transmitted energy.
Velocity scaling	58/60 int8	Velocity scaling used to scale velocity data.
Powerlevel	59/61 int8	Configured power level Unit: [dB]
Magnetometer temperature	60/62 int16	Magnetometer temperature reading. Uncalibrated Raw data in 1/1000 °C Unit: [°C]
Real time clock temperature	62/64 int16	Real Time Clock temperature reading Unit: [°C]
Error status	64/66 16 bits	Error bit mask Object reference given in table below

Status	68/70 32 bits	Status bit mask Object reference given in table below
Ensemble counter	72/74 uint32	Counts the number of ensembles in both averaged and burst data

Position and size variables:

Name	Description	
54/56	The status field is at 54 or 56 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
56/58	The status field is at 56 or 58 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
58/60	The status field is at 56 or 58 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
59/61	The status field is at 59 or 61 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
60/62	The status field is at 60 or 62 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
62/64	The status field is at 62 or 64 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
64/66	The status field is at 64 or 66 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
68/70	The status field is at 68 or 70 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	
72/74	The status field is at 72 or 74 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.	

Object reference: Configuration bit mask

Record Configuration Bit Mask

Field	Position Size	Description
Has pressure sensor	0 bit	Pressure sensor value valid
Has temperature sensor	1 bit	Temperature sensor value valid
Has compass sensor	2 bit	Compass sensor value valid
Has tilt sensor	3 bit	Tilt sensor value valid

Object reference: Error status

Error bit mask

Field	Position Size	Description
Data retrieval FIFO error	0 bit	Data retrieval FIFO error
Data retrieval overflow	1 bit	Data retrieval overflow
Data retrieval underrun	2 bit	Data retrieval Underrun
Data retrieval samples missing	3 bit	Data retrieval samples missing
Measurement not finished	4 bit	The Measurement and data storage/transmit didn't finish before next measurement started.
Sensor read failure	5 bit	Sensor read failure
Tag error beam 1 (In-phase)	8 bit	Tag error beam 1 (In-phase)
Tag error beam 1 (Quadrature- phase)	9 bit	Tag error beam 1 (Quadrature-phase)
Tag error beam 2 (In-phase)	10 bit	Tag error beam 2 (In-phase)
Tag error beam 2 (Quadrature- phase)	11 bit	Tag error beam 2 (Quadrature-phase)
Tag error beam 3 (In-phase)	12 bit	Tag error beam 3 (In-phase)
Tag error beam 3 (Quadrature- phase)	13 bit	Tag error beam 3 (Quadrature-phase)
Tag error beam 4 (In-Phase)	14 bit	Tag error beam 4 (In-phase)
Tag error beam 4 (Quadrature- phase)	15 bit	Tag Error Beam 4 (Quadrature-phase)

Object reference: Status

Status bit mask

Field	Position Size	Description
Wake up state	31-28 4 bits	00 = bad power 01 = power applied 10 = break 11 = RTC alarm
Orientation	27-25 3 bits	0: "XUP" Instrument x-axis defined up, heading reference axis is Z positive 1: "XDOWN" Instrument x-axis defined down, heading reference axis is Z positive 2: "YUP" Instrument y-axis defined up, heading reference axis is Z positive 3: "YDOWN" Instrument y-axis defined down, heading reference axis is Z positive 4: "ZUP" Instrument z-axis defined up, heading reference axis is X positive 5: "ZDOWN" Instrument z-axis defined down, heading reference axis is X positive 7: "AHRS" AHRS reports orientation any way it points. Example: Z down -> Roll = 180 deg.
Auto orientation	24-22 3 bits	0: "Fixed" Fixed orientation 1: "Auto" Auto Up Down 3: "AHRS3D" AHRS3D

7.3 _DF3 CurrentProfileData

Extends: _CommonData

Used By: DF3 VelocityData, DF3 SpectrumData

Common data definitions for Nortek data format 3 (DF3).

Field	Position Size	Description
Blanking	34 uint16	Distance from instrument to first data point on the beam. Raw data given as cm or mm depending on status.blankingDistanceScalingInCm Unit: [m]
Temperature PressureSensor	37 uint8	Temperature of pressure sensor: T=(Val/5)-4.0 Raw value given as 0.2 °C Unit: [°C]
Ambiguity Velocity	52 uint16	Ambiguity velocity, corrected for sound velocity, scaled according to Velocity scaling. 10^(Velocity scaling) m/s

		Unit: [m/s]
Extended status	66 16 bits	Extended status bit mask Object reference given in table below
Status	68 32 bits	Status bit mask. Note that bits 0, 2, 3, 4 are unused. Object reference given in table below

Object reference: Extended status

Extended status bit mask

Field	Position Size	Description
Processor idles < 3%	0 bit	Indicates that the processor Idles less than 3 percent
Processor idles < 6%	1 bit	Indicates that the processor idles less than 6 percent
Processor idles < 12%	1 bit	Indicates that the processor idles less than 12 percent
Extended status should be interpreted	15 bit	If this bit is set the rest of the word/ extended status should be interpreted

Object reference: Status

Status bit mask. Note that bits 0, 2, 3, 4 are unused.

Field	Position Size	Description
Active configuration	16 bit	Bit 16: Active configuration 0: Settings for PLAN,BURST,AVG 1: Settings for PLAN1,BURST1,AVG1
Previous wakeup state	21-18 4 bits	00 = bad power 01 = power applied 10 = break 11 = RTC alarm
Previous measurement skipped due to low voltage	17 bit	Bit 17: Last measurement low voltage skip 0: normal operation 1: last measurement skipped due to low input voltage
Echosounder index	15-12 4 bits	Echosounder frequency index. Valid numbers are 0, 1 and 2 (or 0000, 0001 and 0010) referring to frequencies 1, 2 or 3 as used in SET-/GETECHO.

Telemetry data	11 bit	Telemetry data
Boost running	10 bit	Boost running
Echosounder frequency bin	9-5 5 bit	Used only on the Signature 100 which supports up to 5 packages pr frequency index. Processing is then done on the different frequency bands.
Blanking distance scaling in cm	1 bit	Bit 1: Scaling of blanking distance 0: mm scaling 1: given in cm

7.4 DF7 CurrentProfileData

ID: 0x26

Data definitions for parsing Nortek data format DF7.

Field	Position Size	Description
Version	0 uint8	Revision number.
Instrument type	1 uint8	Type of instrument. 0x26 - The Generation 2 Aquadopp and AWAC.
Offset of data	2 uint16	Number of bytes from start of record to start of non- common data fields. Unit: [# bytes]
Configuration of instrument	4 32 bits	Configuration bit mask. Object reference given in table below
Types of data included	8 32 bits	Types of data included. Object reference given in table below
Valid data	12 64 bits	Bit is true if the chosen data is valid Object reference given in table below
Serial number	20 uint32	Instrument serial number from factory.
Year	24 uint8	Number of years since 1900.
Month	25 uint8	Month number counting from 0 which is January.
Day	26 uint8	Day of the month
Hour	27 uint8	24 hour of the day

Minutes	28 uint8	Minutes.
Seconds	29 uint8	Seconds.
Hundred micro seconds	30 uint16	Hundred micro seconds from last whole second. Unit: [100 μs]
Speed of sound	32 float	Configured or measured sound velocity. Unit: [m/s]
Temperature	36 float	Reading from the temperature sensor. Unit: [°C]
Pressure	40 float	Pressure measurement. Unit: [dBar]
Absolute pressure	44 float	Absolute pressure measurement Unit: [dBar]
Heading	48 float	Heading measurement Unit: [deg]
Pitch	52 float	Pitch measurement Unit: [deg]
Roll	56 float	Roll measurement Unit: [deg]
Standard deviation data.Pressure	60 float	Standard deviation on pressure data Raw data in 0.01 dBar Unit: [dBar]
Standard deviation data. Heading	64 float	Standard deviation on heading data Raw data in 0.01 degrees Unit: [deg]
Standard deviation data.Pitch	68 float	Standard deviation on pitch data Raw data in 0.01 degrees Unit: [deg]
Standard deviation data.Roll	72 float	Standard deviation on roll data Raw data in 0.01 degrees Unit: [deg]
Beams, coordinates and cells.Number of beams	76 uint8	Number of beams used.
Beams, coordinates and cells.Coordinate system	77 uint8	Coordinate system: b00 = ENU b01 = XYZ b10 = BEAM b11 = not used

Beams, coordinates and cells.Number of cells	78 uint16	The number of cells Unit: [m]
Cell size	80 float	The size of each cell
Blanking	84 float	Blanking distance Unit: [m]
Battery voltage	88 float	Battery voltage
Pressure sensor temperature	92 float	Temperature measured by the pressure sensor Unit: [°C]
Magnetometer temperature	96 float	Temperature measured by the magnetometer Unit: [°C]
Real time clock temperature	100 float	Temperature measured by the real time clock Unit: [°C]
Magnetometer.X	104 float	raw X axis value in last measurement interval
Magnetometer.Y	108 float	raw Y axis value in last measurement interval
Magnetometer.Z	112 float	raw Z axis value in last measurement interval
Accelerometer.X	116 float	raw X axis value in last measurement interval
Accelerometer.Y	120 float	raw Y axis value in last measurement interval
Accelerometer.Z	124 float	raw Z axis value in last measurement interval
Ambiguity velocity	128 float	Ambiguity velocity Unit: [m/s]
Velocity scaling	132 float	Scale velocity data to m/s
Powerlevel	136 float	Power level Unit: [dB]
Error status	140 32 bits	Error bit mask. Object reference given in table below
Status	144 32 bits	Status bit mask. Object reference given in table below
Average depth speed	148 float	Average depth speed Unit: [m/s]

Average depth direction	152 float	Average depth direction Unit: [deg]
Number average pings	156 uint16	The number of pings averaged over
Nominal correlation	158 uint16	Nominal correlation
Velocity data	OFFSET int16 *VEL_NB *VEL_NC	This field exists if the Velocity data included bit of the Config byte is set. Data is scaled with Velocity Scaling float value in position 132. Unit: [m/s]
Amplitude data	AMP_POS uint8 *AMP_NB *AMP_NC	This field exists if the amplitude data included bit of the Config byte is set 0.5 dB/count Unit: [dB]
Correlation data	CORR_POS uint8 *CORR_NB *CORR_NC	This field exists if the Correlation data included bit of the Config byte is set [0 – 100 %] Unit: [%]
Percentage good data	PGD_START uint8 *PGD_LEN	Percent Good Estimate per cell These fields exist if the Percentage Good data included Unit: [%]
Quality data	QTY_START uint16 *QTY_LEN	Quality mask for each cell. If value is 0, all controls are passed. Otherwise, the masks show why the data is flagged. For more information see the Data Quality Control chapter. Bit 0 - Not used Bit 1 - Fish Bit 2 - Correlation Bit 3 - Pressure Bit 4 - Not used Bit 5 - Sidelobe Bit 6 - Percentage good Bit 7 - Not used Bit 8 - Bin mapping Bit 9 - Tilt
CTD data.Conductivity	CTD_START float	Conductivity measured by CTD sensor
CTD data.Temperature	CTD_START + 4 float	Temperature measured by CTD sensor
CTD data.Pressure	CTD_START + 8 float	Pressure measured by CTD sensor

STM data.Scattering	STM_START float	Scattering measured by STM sensor
STM data.HighRange	STM_START + 4 float	High range measured by STM sensor
STM data.StdDevScatter ing	STM_START + 8 float	Standard deviation of scattering measured by STM sensor
STM data.StdDevHighRa nge	STM_START + 12 float	Standard deviation of high range measured by STM sensor

Position and size variables:

Name	Description
VEL_NB	Primary dimension of velocity data is number of beams. Length 0 if correlation data in configuration bit map is false.
VEL_NC	Second dimension of velocity data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.
OFFSET	Offset of data given at position 1 in this dataset. Number of bytes from start of record to start of data.
AMP_NB	Primary dimension of amplitude data is number of beams. Length 0 if correlation data in configuration bit map is false.
AMP_NC	Second dimension of amplitude data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.
AMP_POS	Correlation data starts after the amplitude data.
CORR_NB	Primary dimension of correlation data is number of beams. Length 0 if correlation data in configuration bit map is false.
CORR_NC	Second dimension of correlation data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.
CORR_POS	Correlation data starts after the amplitude data.
PGD_LEN	The length of percent good data is the number of cells in the data sett. If the percent good data in the config bitmap is false, length is 0.
PGD_START	Percent good data follows the AHRS data.
QTY_LEN	The length of Quality data is the number of cells in the dataset. If the Quality in the config bitmap is false, length is 0.
QTY_START	Quality data.
CTD_LEN	CTD length.
CTD_START	CTD data.
STM_LEN	STM length.

STM_START

Object reference: Configuration of instrument

Configuration bit mask.

Field	Position Size	Description
Pressure sensor	0 bit	Has pressure sensor
Temperature sensor	1 bit	Has temperature sensor
Compass	2 bit	Has compass
Tilt sensor	3 bit	Has tilt sensor
Recharge battery	4 bit	Need to recharge battery
Number of slanted beams	8-11 4 bits	Number of slanted beams
Total number of beams	12-15 4 bits	Total number of beams

Object reference: Types of data included

Types of data included.

Field	Position Size	Description
Velocity included	0 bit	Velocity data is included
Amplitude included	1 bit	Amplitude data is included
Correlation included	2 bit	Correlation data is included
Percent good data included	3 bit	Percent good data included
Quality data included	4 bit	Quality data included
Altimeter data included	5 bit	Altimeter data included

Recharge battery included	6 bit	Information if the battery needs recharging is included
CTD included	7 bit	Information if CTD data is included
STM included	8 bit	Information if STM data is included

Object reference: Valid data

Bit is true if the chosen data is valid

Field	Position Size	Description
Serial number	0 bit	Serial number is valid
Year, month, day, hour, second	1 bit	Year, month, day, hour, second is valid
Microseconds valid	2 bit	Microseconds data is valid
Speed of sound	3 bit	Speed of sound is valid
Water temperature is valid	4 bit	Water temperature is valid
Pressure	5 bit	Pressure data included
Absolute pressure	6 bit	Absolute pressure data included
Heading	7 bit	Heading is valid
Pitch	8 bit	Pitch is valid
Roll	9 bit	Roll is valid
Standard deviation pressure	10 bit	Standard deviation pressure is valid
Standard deviation heading	11 bit	Standard deviation heading is valid
Standard deviation pitch	12 bit	Standard deviation pitch is valid
Standard deviation roll	13 bit	Standard deviation roll is valid

Number of beams	14 bit	Number of beams is valid
Coordinate system	15 bit	Coordinate system is valid
Number of cells	16 bit	Number of cells is valid
Cell size	17 bit	Cell size is valid
Blanking	18 bit	Blanking is valid
Battery voltage	19 bit	Battery voltage is valid
Temperature in pressure sensor	20 bit	Temperature in pressure sensor data is valid
Temperature in magnetometer is valid	21 bit	Pressure data included
Temperature real time clock	22 bit	Temperature in real time clock is valid
Magnetometer raw	23 bit	Magnetometer raw data is valid
Accelerometer raw data	24 bit	Accelerometer raw data is valid
Ambiguity velocity	25 bit	Ambiguity velocity is valid
Velocity scale	26 bit	Velocity scale is valid
Power level	27 bit	Power level is valid
Error	28 bit	Error is valid
Status	29 bit	Status is valid
Depth average speed	30 bit	Depth average speed is valid
Depth average direction	31 bit	Depth average direction is valid
Number of averaged pings	32 bit	Number of averaged pings data is valid

Nominal correlation	33 bit	Nominal correlation is valid
CTDtemperature	34 bit	CTDtemperature is valid
CTDpressure	35 bit	CTDpressure is valid
CTDconductivity	36 bit	CTDconductivity is valid
STMvalues	37 bit	STMvalues is valid

Object reference: Error status

Error bit mask.

Field	Position Size	Description
Data retrieval FIFO error	0 bit	Data retrieval FIFO error
Data retrieval overflow	1 bit	Data retrieval overflow
Data retrieval underrun	2 bit	Data retrieval Underrun
Data retrieval samples missing	3 bit	Data retrieval samples missing
Measurement not finished	4 bit	Measurement not finished The Measurement and data storage/transmit didn't finish before next measurement started.
Sensor read failure	5 bit	Sensor read failure
Tag error beam 1 (In-phase)	8 bit	Tag error beam 1 (In-phase)
Tag error beam 1 (Quadrature- phase)	9 bit	Tag error beam 1 (Quadrature-phase)
Tag error beam 2 (In-phase)	10 bit	Tag error beam 2 (In-phase)
Tag error beam 2 (Quadrature- phase)	11 bit	Tag error beam 2 (Quadrature-phase)

Tag error beam 3 (In-phase)	12 bit	Tag error beam 3 (In-phase)
Tag error beam 3 (Quadrature- phase)	13 bit	Tag error beam 3 (Quadrature-phase)
Tag error beam 4 (In-Phase)	14 bit	Tag error beam 4 (In-phase)
Tag error beam 4 (Quadrature- phase)	15 bit	Tag Error Beam 4 (Quadrature-phase)

Object reference: Status

Status bit mask.

Field	Position Size	Description	
Is average data	0 bit	True if data is average	
Active configuration	1 bit	True if active configuration	
Last measured low voltage skip	2 bit	Last measured low voltage skip	
In air	3 bit	True if instrument is in air	
Previous wakeup state	16-19 4 bits	Bit 16-19: Wakeup State 00 = bad power 01 = power applied 10 = break 11 = RTC alarm	
Auto orientation	20-22 3 bits	Bit 20-22: autoOrientation 0: "Fixed" Fixed orientation 1: "Auto" Auto Up Down 2: "Auto3D" 3: "AHRS3D" AHRS3D	
Orientation	24-27 4 bits	Bit 24-27: Orientation 4: "UP" 5: "DOWN" 7: "AHRS"	
Wake up state	28-31 4 bits	Bit 28-31: Wakeup State 00 = bad power 01 = power applied 10 = break	

	11 = RTC alarm
--	----------------

7.5 DF3 VelocityData

Extends: _DF3 CurrentProfileData **ID:** 0x15, 0x16, 0x18, 0x1e, 0x1a, 0x1f

Data definitions for parsing Nortek velocity data format 3.

Field	Position Size	Description
Configuration	2 16 bits	Record Configuration Bit Mask Object reference given in table below
Beams, coordinates and cells	30 16 bits	Number of beams, coordinate system and number of cells. Object reference given in table below
Velocity data	OFFSET int16 *VEL_NB *VEL_NC	This field exists if the Velocity data included bit of the Config byte is set. 10^(Velocity Scaling) Unit: [m/s]
Amplitude data	AMP_POS uint8 *AMP_NB *AMP_NC	This field exists if the amplitude data included bit of the Config byte is set 0.5 dB/count Unit: [dB]
Correlation data	CORR_POS uint8 *CORR_NB *CORR_NC	This field exists if the Correlation data included bit of the Config byte is set [0 – 100 %] Unit: [%]
Altimeter data.Altimeter distance	ALTI_POS float	Distance to surface from Leading Edge algorithm Unit: [m]
Altimeter data.Altimeter quality	ALTI_POS + 4 uint16	Result of LE algorithm. When quality is deemed too low according to instrument specific limits. Distance and Quality set to 0.
Altimeter data.Altimeter status	ALTI_POS + 6 16 bits	Altimeter status bit mask
AST data.AST distance	AST_POS float	Distance to surface from Max Peak algorithm Unit: [m]
AST data.AST quality	AST_POS + 4 uint16	Amplitude at which surface is detected Raw data in steps of 0.01 dB, i.e. quality of 8000 = 80 dB Unit: [dB]

AST data.AST offset	AST_POS + 6 int16	Offset in step of measurement to velocity measurement Raw data given in 100 µs Unit: [s]
AST data.AST pressure	AST_POS + 8 float	Pressure value measured during the AST/altimeter ping Unit: [dbar]
Altimeter raw data.Num RawSamples	ALTIRAW_START + 8 uint16	Altimeter Raw Data – Number of Samples
Altimeter raw data. Samples distance	ALTIRAW_START + 10 uint16	Distance between samples Raw data given in 0.1mm Unit: [m]
Altimeter raw data. Data samples	ALTIRAW_START + 12 int16 *NRS	Altimeter Raw Data – Samples Raw data given as 16 bits Signed fract
AHRS data.Rotation matrix	AHRS_START float *3 *3	AHRS Rotation Matrix [3x3]
AHRS data.Quaternion W	AHRS_START + 36 float	W quaternion
AHRS data.Quaternion X	AHRS_START + 40 float	X quaternion
AHRS data.Quaternion Y	AHRS_START + 44 float	Y quaternion
AHRS data.Quaternion Z	AHRS_START + 48 float	Z quaternion
AHRS data.Gyro X	AHRS_START + 52 float	Gyro in X direction in degrees pr second Unit: [dps]
AHRS data.Gyro Y	AHRS_START + 56 float	Gyro in Y direction in degrees pr second Unit: [dps]
AHRS data.Gyro Z	AHRS_START + 60 float	Gyro in Z direction in degrees pr second Unit: [dps]
Percentage good data	PGD_START uint8 *PGD_LEN	Percent Good Estimate per cell These fields exist if the Percentage Good data included Unit: [%]
Standard deviation data.Pitch	SD_START int16	Standard deviation on pitch data Raw data in 0.01 degrees Unit: [deg]
Standard deviation data.Roll	SD_START + 2 int16	Standard deviation on roll data Raw data in 0.01 degrees Unit: [deg]

Standard deviation data.Heading	SD_START + 4 int16	Standard deviation on heading data Raw data in 0.01 degrees Unit: [deg]
Standard deviation data.Pressure	SD_START + 6 int16	Standard deviation on pressure data Raw data in 0.001 Bar Unit: [bar]

Position and size variables:

Name	Description
VEL_NB	Primary dimension of velocity data is number of beams. Length 0 if correlation data in configuration bit map is false.
VEL_NC	Second dimension of velocity data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.
OFFSET	Offset of data given at position 1 in this dataset. Number of bytes from start of record to start of data.
AMP_NB	Primary dimension of amplitude data is number of beams. Length 0 if correlation data in configuration bit map is false.
AMP_NC	Second dimension of amplitude data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.
AMP_POS	Correlation data starts after the amplitude data.
CORR_NB	Primary dimension of correlation data is number of beams. Length 0 if correlation data in configuration bit map is false.
CORR_NC	Second dimension of correlation data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.
CORR_POS	Correlation data starts after the amplitude data.
ALTI_POS	Altimeter data starts after the correlation data.
AST_POS	AST data starts after the altimeter data.
NRS	Number of raw samples given as first element of this object.
ALTIRAW_START	Altimeter raw data starts after the AST data.
AHRS_START	AHRS data follows the altimeter raw data.
PGD_START	Percent good data follows the AHRS data.
SD_START	The standard deviation data follows percent good data.

Object reference: Configuration Record Configuration Bit Mask

Field	Position	Description
	Size	

Has velocity data	5 bit	Velocity data included
Has amplitude data	6 bit	Amplitude data included
Has correlation data	7 bit	Correlation data included
Has altimeter data	8 bit	Altimeter data included
Has altimeter raw data	9 bit	Altimeter raw data included
Has AST data	10 bit	AST data included
Has AHRS data	12 bit	AHRS data included
Has percentage good data	13 bit	Percentage data included
Has standard deviation data	14 bit	Standard deviation data included

Object reference: Beams, coordinates and cells

Number of beams, coordinate system and number of cells.

Field	Position Size	Description
Number of beams	15-12 2 bits	Number of Beams (NB) Active beams represented as a 4 char string of 1s and 0s.
Coordinate system	11-10 2 bits	Coordinate system 00 = ENU 01 = XYZ 10 = BEAM 11 = not used
Number of cells	9-0 10 bits	Number of Cells (NC).

7.6 DF3 SpectrumData

Extends: _DF3 CurrentProfileData

ID: 0x20

Data definitions for parsing V3 amplitude spectrum data.

·	Field Position Description	
---	----------------------------	--

	Size	
Configuration	2 16 bits	Record configuration bit mask. <u>Object reference given in table below</u>
Beams and bins	30 16 bits	Number of bins in the frequency spectrum. Object reference given in table below
Spectrum data.Start frequency	OFFSET float	Start frequency value Unit: [Hz]
Spectrum data.Step frequency	OFFSET + 4 float	Step frequency value Unit: [Hz]
Spectrum data.Frequency data	OFFSET + 64 int16 *BEAMS *BINS	Frequency spectrum amplitude data. There is room for 16 floating points for a spectrum header before the frequency data. Unit: [dB]

Position and size variables:

Name	Description
BEAMS	Matrix first dimension is number of beams. Eg: [[f_start,, f_{start+step*(bins-1)}]_{beam1} [f_start,, f_{start+step*(bins-1)}]_{beam2} [f_start,, f_{start+step*(bins-1)}]_{beams}]
BINS	Per beam, frequencies are given as an array of length as number of bins. First element is the start frequency and frequencies increment by step frequency per element of the array. Eg: [[f_start, f_{start+step}, f_{start+step*2},, f_{start+step*(bins-1)}] _{beam1},,]
16+BEAMSxBINSx2	If configuration.hasSpectrumData is false, spectrum data is length 0. RAW: !this.configuration.hasSpectrumData ? 0 : this.beamsAndBins.numberOfBeams*this.beamsAndBins.numberOfBins*2 + 16*4
OFFSET	Number of bytes from start of record to start of data.

Object reference: Configuration Record configuration bit mask.

Field	Position Size	Description
Has spectrum data	15 bit	Amplitude spectrum data included.

Object reference: Beams and bins

Number of bins in the frequency spectrum.

Field	Position Size	Description
Number of beams	15-13 3 bits	Number of active beams.
Number of bins	12-0 13 bits	Number of bins.

7.7 StringData

ID: 0xa0

String Data Record, eg. GPS NMEA data, comment from the FWRITE command.

Field	Position Size	Description
String	0 Size of record	String data record.

8 Data Quality Control

When collecting average current data with your 2D Horizontal Profiler, the averaged data for each cell and each configured average interval is saved to the **[filename]_avgd.ad2cp** file. The data format used for the average current data is data format 7 (see DF7 CurrentProfileData). Single ping data is not saved, so to avoid bias from single pings with poor quality being included in the average, the instrument has an internal quality control which discards all pings with less than 50 % correlation before averaging. For more information about the correlation parameter, please refer to Principles of Operation - Currents.

In the DF7 average current data there is also a Percentage Good value which indicates how many pings have been discarded from each cell in each average interval. For example, if you have configured your instrument to do 10 pings within each average interval, and one ping in the first cell is removed because of low correlation, the resulting Percentage Good value will be 90 % for this cell. If the Percentage Good value is 0 all pings have been discarded due to low correlation and the velocity will be set to 0.

In addition to discarding the pings with less than 50 % correlation, the instrument will also give you a 16 bits Quality Code for each cell. The quality checks included in the quality control are the following:

Bit 0 (0000 0000 0001) - Not used

Bit 1 (0000 0000 0010) - Fish filter

Mask based on spike detection in each beam when compared to the mean values of the other beams.

Bit 2 (0000 0000 0100) - Correlation

Pings with correlation less than 50 % are masked.

Bit 3 (0000 0000 1000) - Pressure

Uses the pressure readings to detect if the collected data is out of water.

Bit 4 (0000 0001 0000) - Not used

Bit 5 (0000 0010 0000) - Sidelobe

Masks cells contaminated by surface sidelobes by comparing the minimum absolute pressure during the average interval to a conservative cutoff value of 1050 hPa for the corresponding surface pressure. For more information about sidelobes, refer to the following FAQ: What is sidelobe interference?

Bit 6 (0000 0100 0000) - Percent good

Masks the cell if the Percent Good value is below 50 %. The Percent Good is calculated by dividing the number of pings that have passed the correlation test by the total number of pings within the cell and average interval.

Bit 7 (0000 1000 0000) - Not used

Bit 8 (0001 0000 0000) - Bin map

Used when no cells could be mapped to this vertical position, for example due to a tilted instrument.

Bit 9 (0010 0000 0000) - Tilt

Masks entire profile where either the average pitch or roll exceeds 40° through the average interval or the pitch or roll standard deviation exceeds 5°.

If the Quality Code is 0, all controls are passed. Otherwise, the code itself indicates why the data is flagged. If a data point is flagged by several control parameters, the code will be a combination of the respective bits. For example if the cell has one or several pings that is removed due to low correlation and it is detected to be within the sidelobe interference area the status code will be 0000 0010 0100 with bit 2 and bit 5 used. Note that these checks do not remove or alter the data in any way, only flags it. In post processing, you can choose if you want to discard the data masked because of one or several of the quality parameters listed above or to keep them and do quality control manually.

8.1 Telemetry Quality Control

When your 2D Horizontal Profiler is set up to do telemetry of average current data all pings will go through the same internal quality control as described in the previous chapter. Before the data is averaged and outputted, every ping with less than 50 % correlation will be discarded. If more than 50 % of the data points within one cell and average interval are discarded due to too low correlation, the whole cell will be flagged as bad. The flagged data will show as extreme values in your data:

Velocity: -32.767 m/s
Speed: 46.34 m/s
Direction: 225°

Note that the internal quality control described above is applied to all ASCII telemetry data formats and can not be disabled.

9 Telemetry Data Formats

This section describes the Telemetry Data formats. Telemetering data means to send data packets over the communications line while the instrument is measuring. While data is telemetered, the raw data will be saved on the recorder for later retrieval. Note that different data types have separate telemetry data formats (see the following chapters). Telemetry of each data type needs to be configured individually by their specific command. **SETTMAVG** is for example used to configure telemetry of average current data. The telemetry data formats can be configured both to be outputted over either the serial or ethernet communication line, or to be save to the recorder. The telemetry file output will be saved to the recorder in a file named "telemetryfile.bin" when enabled.

9.1 Average Telemetry Data Formats

The telemetry of the average current data is controlled by the **SET/GETTMAVG** command. The DF parameter of this command sets the data format, this can also be set in the deployment software.

Data format (DF)	Description
3	Binary format as described in the data format chapter.
7	Binary format as described in the data format chapter. Same as saved to the recorder.
100	Same NMEA format as previous generations of Aquadopp/AWAC (NMEA sentences: PNORI, PNORS and PNORC).
101	NMEA format 1 (without tags). (NMEA sentences: PNORI1, PNORS1 and PNORC1).
102	NMEA format 2 (with tags). (NMEA sentences: PNORI2, PNORS2 and PNORC2).
103	NMEA format 3 (with tags). (NMEA sentences: PNORH3, PNORS3 and PNORC3).
104	NMEA format 4 (without tags). (NMEA sentences: PNORH4, PNORS4 and PNORC4).
150	RDI Workhorse PD0 data format. Refer to RDI for documentation.
503	Only for the 400 kHz instrument. Legacy binary data format, same as for the previous generation of AWACs. Described in the <u>Integrators Guide - Classic</u>
600	Only for the 1 MHz instrument. Legacy binary data format, same as for the previous generation of Aquadopp Profilers. Described in the Integrators Guide - Classic

9.1.1 NMEA Format (DF=100)

Information (configuration): \$PNORI

Column	Description	Data format	Examp le
0	Identifier	"\$PNORI"	
1	Instrument type	N	2

		0 = Aquadopp 2 = Aquadopp Profiler 4 = Signature 5 = AWAC and 400 kHz 2D Horizontal Profiler	
2	Head ID	String	Aquado pp Profiler 2 MHz S2SP1 23456
3	Number of beams	N	3
4	Number of cells	N	20
5	Blanking (m)	dd.dd	0.20
6	Cell size (m)	dd.dd	1.00
7	Coordinate system	N 0 = ENU 1 = XYZ 2 = BEAM	0
8	Checksum	*hh	2E

Example (DF=100): \$PNORI,2,Aquadopp Profiler 2 MHz \$2\$P123456,3,20,0.20,1.00,0*2E

Sensor data: \$PNORS

Colum n	Description	Data format	Exam ple
0	Identifier	"\$PNORS"	
1	Date	MMDDYY	10211 5
2	Time	HHMMSS	09071 5
3	Error Code (hex)	hhhhhhhh	00000 000
4	Status Code (hex)	hhhhhhhh	2A480 000
5	Battery Voltage	dd.d	14.4
6	Sound Speed	dddd.d	1523.0

7	Heading	ddd.d	275.9
8	Pitch (deg)	dd.d	15.7
9	Roll (deg)	dd.d	-2.3
10	Pressure (dBar)	ddd.ddd	0.000
11	Temperature (deg C)	dd.dd	22.45
12	Analog input #1	n/a	0
13	Analog input #2	n/a	0
14	Checksum	*hh	1C

Example (DF=100):

\$PNORS,102115,090715,00000000,2A480000,14.4,1523.0,275.9,15.7,2.3,0.000,22.45,0,0*1C

Current velocity data: \$PNORC

Note that for three beam instruments the velocity, amplitude and correlation field for the fourth beam will be empty.

Colum n	Description	Data format	Exam ple
0	Identifier	"\$PNORC"	
1	Date	MMDDYY	10211 5
2	Time	HHMMSS	09071 5
3	Cell number	N	4
4	Velocity 1 (m/s) (Beam1/X/East)	dd.dd	0.56
5	Velocity 2 (m/s) (Beam2/Y/North)	dd.dd	-0.80
6	Velocity 3 (m/s) (Beam3/Z1/Up1)	dd.dd	-1.99
7	Velocity 4 (m/s) (Beam4/Z2/Up2)	dd.dd	-1.33
8	Speed (m/s)	dd.dd	0.98
9	Direction (deg)	ddd.d	305.2
10	Amplitude unit	C=Counts	С
11	Amplitude (Beam 1)	N	80
12	Amplitude (Beam 2)	N	88
13	Amplitude (Beam 3)	N	67

14	Amplitude (Beam 4)	N	78
15	Correlation (%) (Beam1)	N	13
16	Correlation (%) (Beam2)	N	17
17	Correlation (%) (Beam3)	N	10
18	Correlation (%) (Beam4)	N	18
19	Checksum	*hh	22

Example (DF=100): \$PNORC, 102115, 090715, 4, 0.56, -0.80, -1.99, -1.33, 0.98, 305.2, C, 80, 88, 67, 78, 13, 17, 10, 18*22

9.1.2 NMEA Format 1 and 2 (DF=101/102)

Information Data:

Identifier:

PNORI1 for DF = 101 (without tags) PNORI2 for DF = 102 (with tags)

Column	Field	TAG	Data format	Example
1	Instrument type	ІТ	N 0 = Aquadopp 2 = Aquadopp Profiler 4 = Signature 5 = AWAC and 400 kHz 2D Horizontal Profiler	IT=2
2	Head ID	SN	N	SN=123456
3	Number of Beams	NB	N	NB=3
4	Number of Cells	NC	N	NC=30
5	Blanking Distance [m]	BD	dd.dd	BD=1.00
6	Cell Size [m]	CS	dd.dd	CS=5.00
7	Coordinate System	CY	N ENU,BEAM, or XYZ	CY=BEAM

Example (DF=101):

\$PNORI1,2,123456,3,30,1.00,5.00,BEAM*5B

Example (DF=102):

\$PNORI2,IT=2,SN=123456,NB=3,NC=30,BD=1.00,CS=5.00,CY=BEAM*68

Sensors Data:

Identifier:

PNORS1 for DF = 101 (without tags)

PNORS2 for DF = 102 (with tags)

Column	Field	TAG	Data format	Example
1	Date	DATE	MMDDYY	DATE=083013
2	Time	TIME	HHMMSS	TIME=132455
3	Error Code	EC	N	EC=0
4	Status Code	SC	hhhhhhh	SC=34000034
5	Battery Voltage [V]	BV	dd.d	BV=23.9
6	Sound Speed [m/s]	SS	dddd.d	SS=1500.0
7	Heading Std.Dev. [deg]	HSD	dd.dd	HSD=0.02
8	Heading [deg]	Н	ddd.d	H=123.4
9	Pitch [deg]	PI	dd.d	PI=45.6
10	Pitch Std.Dev [deg]	PISD	dd.dd	PISD=0.02
11	Roll [deg]	R	dd.d	R=23.4
12	Roll Std.Dev. [deg]	RSD	dd.dd	RSD=0.02
13	Pressure [dBar]	Р	ddd.ddd	P=123.456
14	Pressure StdDev [dBar]	PSD	dd.dd	PSD=0.02
15	Temperature [deg C]	Т	dd.dd	T=24.56

Example (DF=101):

\$PNORS1,083013,132455,0,34000034,23.9,1500.0,0.02,123.4,45.6,0.02,R=23.4,0.02,123.456,0.02,24.5 6*39

Example (DF=102):

\$PNORS2,DATE=083013,TIME=132455,EC=0,SC=34000034,BV=23.9,SS=1500.0,HSD=0.02,H=123.4, PI=45.6,PISD=0.02,R=23.4,RSD=0.02,P=123.456,PSD=0.02,T=24.56*3F

Averaged Data:

Identifier:

PNORC1 for DF = 101 (without tags) PNORC2 for DF = 102 (with tags)

The averaged data is repeated for each measurement cell.

Note that for three beam instruments the velocity, amplitude and correlation field for the fourth beam will not be included. Only data relevant for the configured coordinate system will be included

Column	Field	TAG	Data format	Example
1	Date	DATE	MMDDYY	DATE=083013

Column	Field	TAG	Data format	Example
2	Time	TIME	HHMMSS	TIME=132455
3	Cell Number	CN	N	CN=3
4	Cell Position [m]	СР	dd.d	CP=11.0
5	Velocity East [m/s]	VE	dd.ddd	VE=0.332
6	Velocity North [m/s]	VN	dd.ddd	VN=0.332
7	Velocity Up [m/s]	VU	dd.ddd	VU=0.332
8	Velocity Up2 [m/s]	VU2	dd.ddd	VU2=0.332
9	Velocity X [m/s]	VX	dd.ddd	VX=0.332
10	Velocity Y [m/s]	VY	dd.ddd	VY=0.332
11	Velocity Z [m/s]	VZ	dd.ddd	VZ=0.332
12	Velocity Z2 [m/s]	VZ2	dd.ddd	VZ2=0.332
13	Velocity Beam 1 [m/s]	V1	dd.ddd	V1=0.332
14	Velocity Beam 2 [m/s]	V2	dd.ddd	V2=0.332
15	Velocity Beam 3 [m/s]	V3	dd.ddd	V3=-0.332
16	Velocity Beam 4 [m/s]	V4	dd.ddd	V4=-0.332
17	Amplitude Beam 1 [dB]	A1	ddd.d	A1=78.9
18	Amplitude Beam 2 [dB]	A2	ddd.d	A2=78.9
19	Amplitude Beam 3 [dB]	A3	ddd.d	A3=78.9
20	Amplitude Beam 4 [dB]	A4	ddd.d	A4=78.9
21	Correlation Beam 1 [%]	C1	N	C1=78
22	Correlation Beam 2 [%]	C2	N	C2=78
23	Correlation Beam 3 [%]	C3	N	C3=78
24	Correlation Beam 4 [%]	C4	N	C4=78

Example (DF=101 (ENU, 3 beams)):

\$PNORC1,083013,132455,3,11.0,0.332,0.332,0.332,78.9,78.9,78.9,78,78,78*46

Example (DF=102 (ENU, 3 beams)):

\$PNORC2, DATE=083013, TIME=132455, CN=3, CP=11.0, VE=0.332, VN=0.332, VU=0.332, A1=78.9, A2=78.9, A3=78.9, C1=78, C2=78, C3=78*6D

Example (DF=102 (BEAM, 4 beams)):

\$PNORC2, DATE=083013, TIME=132455, CN=3, CP=11.0, V1=0.332, V2=0.332, V3=-0.332, V4=-0.332, A1=78.9, A2=78.9, A3=78.9, A4=78.9, C1=78, C2=78, C3=78, C4=78*49

9.1.3 NMEA Format 3 and 4 (DF=103/104)

Header Data:

Identifier:

PNORH3 for DF = 103 (with tags) PNORH4 for DF = 104 (without tags)

Column	Field	TAG	Data format	Example
1	Date	DATE	YYMMDD	DATE=141112
2	Time	TIME	HHMMSS	TIME=081946
3	Error Code	EC	N	EC=0
4	Status Code	sc	hhhhhhh	SC=2A4C0000

Example (DF=103):

\$PNORH3,DATE=141112,TIME=081946,EC=0,SC=2A4C0000*5F

Example (DF=104):

\$PNORH4,141112,083149,0,2A4C0000*4A68

Sensors Data:

Identifier:

PNORS3 for DF = 103 (with tags) PNORS4 for DF = 104 (without tags)

Column	Field	TAG	Data format	Example
1	Battery [V]	BV	dd.d	BV=23.9
2	Sound Speed [m/s]	ss	dddd.d	SS=1500.0
3	Heading [deg]	Н	ddd.d	H=123.4
4	Pitch [deg]	PI	dd.d	PI=45.6
5	Roll [deg]	R	dd.d	R=23.4
6	Pressure [dBar]	Р	ddd.ddd	P=123.456
7	Temperature [deg C]	Т	dd.dd	T=24.56

Example (DF=103):

\$PNORS3,BV=33.0,SS=1546.1,H=151.1,PI=-12.0,R=-5.2,P=705.669,T=24.96*7A

Example (DF=104):

\$PNORS4,33.0,1546.1,151.2,-11.9,-5.3,705.658,24.95*5A

Averaged Data:

Identifier:

PNORC3 for DF = 103 (with tags) PNORC4 for DF = 104 (without tags)

The averaged data is repeated for each measurement cell.

Column	Field	TAG	Data format	Example
1	Cell position [m]	СР	dd.d	CP=2.5
2	Speed [m/s]	SP	dd.ddd	SP=0.751
3	Direction [deg]	DIR	ddd.d	DIR=170.1
4	Averaged Correlation [%]	AC	N	AC=5
5	Averaged Amplitude [db]	AA	N	AA=28

Example (DF=103):

\$PNORC3, CP=4.5, SP=3.519, DIR=110.9, AC=6, AA=28*3B

Example (DF=104):

\$PNORC4,27.5,1.815,322.6,4,28*70

Table of Figures	
Figure 1: Instrument modes of operation	. 7