NORTEK MANUALS Integrator's Guide

3

Table of Contents

Ch. 1	Introduction	6
Ch. 2	Basic interface concept	8
2.1	Modes	8
2.2	Break	
2.3	Dual Processor	
Ch. 3	Interfaces	10
3.1	Command interface	10
3.2	Telemetry	10
3.3	Ethernet Operation	11
	Telnet Connection	12
	Raw Connections	12
	FTP	13
	HTTP	13
	UDP	13
	PTP/NTP	14
3.4	Serial Operation	14
3.5	Triggers	14
Ch. 4	Using the Command Interface	16
Ch. 4 4.1	Using the Command Interface GETALL	
	-	
4.1	GETALL	17 21
4.1	GETALL User Cases	
4.1	GETALL User Cases Checking instrument state over Ethernet	
4.1	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP	
4.1	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port	
4.1	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100	17 21 21 21 21 23 23 24 24
4.1	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55	17 21 21 21 21 23 23 24 24 24 26
4.1	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500	17 21 21 21 21 23 23 24 24 24 26
4.1 4.2	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500 Average telemetry, Signature1000	17 21 21 21 23 24 24 24 26 26 26 28
4.1 4.2 Ch. 5	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500 Average telemetry, Signature1000	17 21 21 21 23 24 24 24 26 26 28 30
4.1 4.2 Ch. 5 5.1	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500 Average telemetry, Signature1000	17 21 21 21 23 24 24 24 26 26 26 28 30 30 34
4.1 4.2 Ch. 5 5.1 5.2	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500 Average telemetry, Signature1000 Commands List of Commands Instrument main settings	17 21 21 21 23 24 24 24 26 26 26 28 30 34 35
4.1 4.2 Ch. 5 5.1 5.2 5.3	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500 Average telemetry, Signature1000 Commands List of Commands Instrument main settings	17 21 21 21 23 24 24 24 26 26 26 26 28 30 30 34 35 36
4.1 4.2 Ch. 5 5.1 5.2 5.3 5.4	GETALL User Cases Checking instrument state over Ethernet Download telemetry file via FTP Download telemetry file over serial port View memory and power requirements, Signature100 Average velocity data and NMEA, Signature 55 Disable a beam, Signature500 Average telemetry, Signature1000 Average telemetry, Signature1000 List of Commands Instrument main settings Clock settings as strings	17 21 21 21 23 24 24 24 26 26 26 26 26 28 30 30 34 35 36 37

4 Integrator's Guide

5.8	High resolution burst settings	41
5.9	Echosounder settings	42
5.10	Read raw echosounder parameters	44
5.11	Alternating plan configuration	45
5.12	Get memory usage	46
5.13	Trigger settings	47
5.14	Trigger measurement	48
5.15	External sensor settings	48
5.16	Get power use	49
5.17	Get measured precision	50
5.18	Instrument user settings	50
5.19	Get instrument ID	51
5.20	Reload default settings	52
5.21	Save settings	52
5.22	Deploy instrument	53
5.23	Start instrument	54
5.24	Enter command mode	54
5.25	Data retrieval mode	54
5.26	Enter measurement mode	55
5.27	Write to file	55
5.28	Power down	55
5.29	Erase files on recorder	56
5.30	Format recorder	56
5.31	SEC reboot	56
5.32	List files	57
5.33	Download	57
5.34	Inquire state	58
5.35	Get instrument state	59
5.36	Get error	60
5.37	Get all	60
5.38	Get recorder state	61
5.39	Get configuration limits	61
5.40	Get transfer matrices	62
5.41	Average mode telemetry settings	63
5.42	Burst mode telemetry settings	64
5.43	Altimeter telemetry settings	65
5.44	Get telemetry file size	66
5.45	Download telemetry	67
5.46	Save configuration to file	67
5.47	Erase telemetry file	68
5.48	Write tag output	68
5.49	Major beam angle calibration	69
5.50	Major beam angle offset calibration	70

© 2025 Nortek AS

5

5.51	Minor beam angle calibration	71
5.52	Minor beam angle offset calibration	72
5.53	Echosounder gain calibration	73
5.54	Two way beam angle calibration	74
5.55	Precision time protocol	75
5.56	Wake Doppler processor	76
5.57	Wave processing settings	76
5.58	Wave telemetry settings	77
5.59	Get hardware specifications	78
5.60	Add license	-
5.61	Delete license	79
5.62	Lists license keys	79
Ch. 6	Binary data formats	80
6.1	_HeaderData	82
6.2	_CommonData	83
6.3	_DF3 CurrentProfileData	86
6.4	DF3 EchosounderData	90
6.5	EchosounderRawData	90
6.6	DF3 VelocityData	94
6.7	DF3 SpectrumData	97
6.8	WaveData	
6.9	StringData	106
Ch. 7	Telemetry Data Formats	106
7.1	Averaging Mode	108
	NMEA Format (DF=100)	109
	NMEA Format 1 and 2 (DF=101/102)	111
	NMEA Format 3 and 4 (DF=103/104)	113
7.2	Burst	
	NMEA Format 1 and 2 (DF=101/102)	
	NMEA Format 3 and 4 (DF=103/104)	
7.3	Altimeter	
7.4	Waves	
	NMEA Waves DF501	121
Ch. 8	Appendices	126
8.1	Echosounder equations	126
8.2	Raw echosounder data parsing	127
8.3	Checksum Definition	128

1 Introduction

The primary objective of this manual is to provide the information needed to control a Nortek product that is based on the AD2CP hardware platform. This includes all instruments in the Signature series. It is aimed at system integrators and engineers with interfacing experience, but it also includes examples on how to configure and start the instrument for more inexperienced integrators. The document's scope is limited to interfacing and does not address general performance issues of the instrument. For a more thorough understanding of the principles, we recommend the <u>Principles of Operation</u>, and for information about how to operate the instrument, we recommend the instrument-specific Operations Manual, available for the <u>55/100</u> and the <u>250/500/1000</u>.

The document is complete in the sense that it describes all available commands and modes of communication. For most users, it will make sense to let the supplied Nortek software do most of the hardware configuration and then let the controller limit its task to starting/stopping data collection.

Nortek online

At our website, <u>www.nortekgroup.com</u>, you will find technical support, user manuals, FAQs and the latest software and firmware. General information, technical notes, and user experience can also be found here.

Your feedback is appreciated

If you find errors, omissions or sections poorly explained, please do not hesitate to contact us. We appreciate your comments and your fellow users will as well.

Contact Information

We recommend first contacting your local sales representative before the Nortek main office. If you need more information, support or other assistance, you are always welcome to contact us or any of our subsidiaries by email or phone

Email: <u>inquiry@nortekgroup.com</u> (general inquiries), <u>support@nortekgroup.com</u> (technical support) Phone: +47 67 17 45 00

You can also write us at: Nortek AS Vangkroken 2 1351 RUD Norway

Version/revision	Date	Comments
Version 2015.1	2015	First version
Version 2015.2	20.10.2015	
Version 2016.1	01.03.2016	
Version 2016.2	14.03.2016	Minor updates
Version 2016.3	30.09.2016	
Version 2017.1	10.02.2017	
Version 2017.2	20.10.2017	
Version 2017.3	06.12.2017	Minor updates
Version 2018.1	03.10.2018	
Version 2021.1	27.01.2021	Major updates

7

Version 2021.2	17.09.2021	Major updates.
Version 2022.1	11.01.2022	Minor updates to command layouts
Version 2022.2	31.03.2022	Additions to data format chapters
Version 2022.3	23.09.2022	Data format clarification and minor updates
Version 2023.1	23.03.2023	Major data format updates and additions. Internal wave processing included. Updated contact information.
Version 2024.1	18.01.2024	Minor updates.
Version 2025.1	30.04.2025	Major review of the commands and binary data formats chapter. Description of Status and Extended status for DF3 is gathered and elaborated.

2 Basic interface concept

The Nortek Signature Series products command interface are ASCII based and line oriented. Before diving into the chapters covering interfaces and commands, the operational modes and how to change between the modes are described. Understanding the use and constraints of the modes is important as they are used frequently when communicating with the instrument.

2.1 Modes

The current profiler operates in distinct modes. These modes have several explicit commands used to control the instrument. The majority of the commands are initiated from the Command mode. The possible modes for the instrument are:

- Command: Command and control
- Data Retrieval: Data download from recorder
- **Measurement:** Data collection mode
- **Confirmation** : Confirmation mode

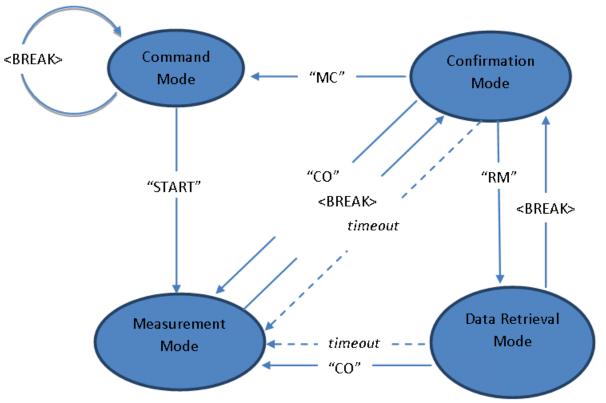
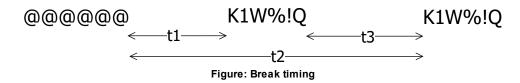


Figure: Instrument modes of operation

Initializing communication with the instrument is performed by sending a **<BREAK>**, which is defined in the next section. The **<BREAK>** will either set the instrument in Confirmation Mode or restart Command Mode. The options for changing mode depends on the present mode of the instrument (see diagram above for clarity). The timeout shown in the diagram occurs if no commands are received in the various modes. A timer will then ensure that instrument operation continues. The timeout value in the Confirmation and Data Retrieval Modes is 60 seconds. There is also a timeout in Command Mode when


operating over the serial interface. If no commands are received for 5 minutes, a break or a sequence of @@@@@@ must be sent to wake up the processor.

2.2 Break

<BREAK> over the serial RS232/RS422 interface is defined as:

@@@@@@@ <delay 150 milliseconds> K1W%!Q <delay 400 milliseconds> K1W%!Q

The figure and the table below show the specified timing of the **<BREAK>** sequence:

Symbol	Parameter	Min.	Typical	Max.	Unit
t1	Time from end of @-sequence to start of <i>first</i> K1W%!Q-sequence.	100	150		ms
t2	Time from end of @-sequence to start of second K1W %!Q-sequence.	500	1000	2000	ms
t3	Time between <i>first</i> and <i>second</i> K1W%!Q-sequence.	300	400		ms

2.3 Dual Processor

The AD2CP uses a two-processor (DSP) design; one dedicated to Doppler processing (BBP) and the other to Interface (SEC). The primary interface is Ethernet, so the Interface processor is only powered when external power is applied. Note that powering through the Ethernet cable will also power the rest of the electronics. As the primary interface, the Ethernet cable takes priority, so if it is powered while the Serial interface is also powered, you will only be able to use Ethernet for communications and data output.

⁹

3 Interfaces

In addition to the traditional serial port interface for real time data output there are several options for communication over Ethernet. The Ethernet communication is handled by a dedicated processor in the instrument. This network processor runs a Linux operating system, which makes it possible to connect to the instrument via telnet, raw connections and FTP. The network processor mainly provides Ethernet connectivity. The other processor in the instrument, called the Doppler processor, is where the commands end up and where they are used to perform the measurements as specified.

The concept of a telemetry file has also been introduced which can be utilized in several ways depending on the chosen interface. Below are some details:

3.1 Command interface

The command interface makes it possible to communicate with a Signature instrument using terminal software, the serial port and a set of commands. The interface is also available over Telnet. Some highlights:

- · ASCII based and line oriented. Commands are terminated with CR/LF
- Optional capsulation of commands using NMEA style prefix and checksum to ensure data integrity
- NMEA style commands will return argument names in their response
- · Argument limits can be retrieved through commands
- · Comprehensive validation and error handling is implemented
- Invalid configurations return the erroneous argument with limits directly, so that each subsequent error can be handled until a valid configuration is achieved
- A single command can be used to retrieve the complete configuration of the instrument with optional output to file
- · Commands to set default parameters
- External controllers can use commands to store data in the raw data file (e.g. GPS position)

3.2 Telemetry

Our use of the telemetry term implies a "subset transfer system", that is, storing a subset of data for transfer over low-bandwidth links (for example over Iridium links, acoustic modems, etc.). The telemetry file is typically used in cases where the integrator either does not have the processing power or bandwidth (if only a low data rate serial port is available) to do the processing themselves.

For online data transmission a versatile scheme for telemetry options is available. The telemetry file can be read out over the serial interface either in chunks or as a complete file while checksum or CRC on the downloaded data can be applied in a configurable manner. This enables external controllers to configure separate handling of all, or a subset, of the measured data. That means the file can be output directly as they are ready, or the data can be stored to a telemetry file for later retrieval. The data format can be selected from a number of formats, including both binary and ASCII data formats.

Since the instruments store individual ping data to file, the telemetry option can also be used to average velocity data within the instrument. This averaged data can be immediately output via serial line or stored for later retrieval in telemetry files. System integrators are able to regularly offload subsets of data using FTP and telemetry files can be deleted after download.

Since the telemetry file can be retrieved also in Data Retrieval Mode, the instrument will continue measuring after a timeout delay if the data transfer was interrupted. Erasing the telemetry file after data retrieval will ensure that no data is lost if the transfer is interrupted.

The raw data, by design, is not supposed to be deleted from the disk. The raw data is collected and saved continuously throughout the deployment and the configuration is supposed to be set up in such a way that there is sufficient disk space to last for the whole deployment period (that is one of the factors that the deployment software takes into account). The raw data is then taken off the disk after the deployment and post-processed as required.

To FTP

The telemetry option implemented in the Doppler processor enables system integrators to regularly offload subsets of the data by using FTP. When the network processor receives an incoming FTP request, it will interrupt the Doppler processor by entering Data Retrieval Mode and mount the file system of the recorder. The data files on the recorder can then be accessed over FTP. The telemetry file can be deleted after it has been downloaded, which is particularly suitable for event driven data downloads. If the instrument was started with the DEPLOY command, it will resynchronize to its measurement time base after the FTP session has ended.

For an example on how to configure the instrument to output a telemetry file and download the file to FTP, check out <u>this section</u>.

3.3 Ethernet Operation

The AD2CP uses TCP (transmission control protocol) for both command processing and data transmission. The Internet Protocol uses a combination of the IP address and port to uniquely identify a communications channel between two computers. For the AD2CP, different ports represent different means of communicating with the instrument. TCP ports 9001, 2002, 9004 are assigned for the following uses:

- Port 9000 is a telnet-protocol ASCII interface (require username / password authentication)
- Port 9001 is a raw (binary) interface (requires username / password authentication)
- Port 9002 is a data only channel (no input accepted)
- Port 9004 is an ASCII data only channel (no input accepted).

The password entry is ignored if password authentication, as shown in the web page configuration, is disabled (so any input, including an empty password, is accepted). The command and data record formats for the interfaces are the same as for the serial port.

Commands available in measurement mode should be preceded by the command **BBPWAKEUP**. This ensures that the BBP is ready to process the command when it is received (see <u>Checking instrument</u> <u>state over Ethernet</u>). In measurement mode, another **BBPWAKEUP** must be sent when more than 2 seconds has elapsed since the previous command.

If uncertain of the active mode it is good practice to send **BBPWAKEUP** before sending **GETSTATE** or **INQ**.

3.3.1 Telnet Connection

The telnet interface (TCP/IP port 9000) is used for user interaction with the instrument. This dedicated port can be used for entering commands and getting human readable responses (ASCII). The supported command set is available in the <u>Commands</u> section. The Windows telnet client can be used to connect into the instrument using the command line telnet ip_address 9000. You will get prompted for a username (nortek) and password (leave blank and hit Enter if password protection hasn't been enabled via the web interface).

Signature Username: nortek Password: Nortek Signature Command Interface

The interface is very similar to the direct serial interface over RS232/RS422 but some additions are made to simplify the interfacing. Most notable is the ability to send a <BREAK> to the Doppler processor just by using **CtrI-C** (ASCII 0x03). The internal application takes care of waking up the Doppler DSP and timing the delivery of the break string.

The telnet server is not configured to echo characters, so users wishing to see and/or edit commands before sending them to the instrument should enable local echo and local line editing. If those features are desired, a telnet client capable of supporting local echo and local line editing must be used (e.g. PuTTY).

Port 9000 is dedicated for ASCII only communication whereas the ports described in the next section provide the complete set of data, including binary output of the measurements. A telnet client should *not* be used to access these ports. Read more about this in the next section.

To terminate the telnet connection, enter Ctrl-X (ASCII 0x18).

3.3.2 Raw Connections

A port can be understood as a address point between two communicating parts. When first connecting to a data listening port, the string "\r\nNortek name Data Interface\r\n" (*name* is replaced by the instrument host name) is sent to identify the instrument that has responded to the connection request. TCP ports 9001, 9002 and 9004 are assigned for the following uses:

- Port 9001 is used for machine driven control. This port requires username/password. The serial port data is translated directly into TCP/ IP over Ethernet. Binary data generated in measurement mode is visible on this port. Standard streaming record delineation techniques must be used in order to make sure that the received data is properly synchronized for decoding. A break can be sent by sending the string K1W%!Q<CR><LF> to the instrument or a CtrI-C character (ASCII 0x03) (CtrI-C has to be sent on its own and *not* embedded in any command). The internal application takes care of the appropriate timing of the break sent over the internal serial port. This port require username / password authentication. Refer to previous section for example. The password entry is ignored if password authentication, as shown in the web page configuration, is disabled (so any input, including an empty password, is accepted). The command and data record formats for the interfaces are the same as for the serial port.
- Port 9002 is a data only channel which will output all data that is configured for a telemetry file with serial output. This can, for example, be used by display only software while configuration is done by another application.

• Port 9004 outputs ASCII data (no binary) that is configured for serial output. The instrument should be configured to output a telemetry file with serial output enabled in ASCII format.

A telnet client should *not* be used to access these ports. Telnet incorporates its own binary protocol which is neither interpreted nor sent via the raw connection. Using a telnet client on these ports will result in extraneous characters being sent and certain binary characters being interpreted by the client.

3.3.3 FTP

The internal data recorder is accessed over Ethernet using a standard FTP (File Transfer Protocol) client. Together with the various telemetry options, the FTP data download serves as a simple way to download measured data at regular intervals if true real time operation is not required. Only the telemetry file can be deleted using FTP.

When an FTP connection is active, the internal state of the machine is changed so that commands are no longer processed (and an error is returned when commands are entered). Terminating the FTP connection or sending a **<BREAK>** followed by the **CO** command will switch the instrument back to the mode it was in before the FTP session began. If a break command is sent while an FTP transaction is in progress, the FTP connection will be forcibly terminated.

If an FTP connection is done when the instrument is in Measurement Mode (see <u>Modes diagram</u>), the FTP connection is made through Data Retrieval Mode. When the FTP connection is terminated, the instrument will then return to Measurement Mode. If no data is transferred or no FTP commands sent for 120 seconds, the FTP connection will terminate and the instrument will return to Measurement Mode.

For an example on how to configure the instrument to output a telemetry file and download the file to FTP, check out the <u>User Cases</u>.

3.3.4 HTTP

HTTP (Hypertext Transfer Protocol) can also be used for data transmission. For organizations with strong security/firewall restrictions, FTP access to the instrument may not be permitted. For that reason, a web page allowing individual data files to be downloaded has been implemented in the Ethernet processor. The web page can be accessed by clicking on the "Data Download (HTTP)" link from the main web page.

3.3.5 UDP

UDP (user datagram protocol) can also be used for data transmission. When using UDP, the data collection software simply waits for data to be sent from the instrument without having to establish a connection first. This may be useful for cases in which instrument power is intermittently interrupted and re-connecting to the instrument is not desirable. One downside to UDP communications is that transmission of the data is not guaranteed. On a noisy/error-prone connection, it is possible that the occasional datagram may be dropped. If every data record must be received, then TCP is recommended.

In order to use UDP in a power-safe configuration, the IP address of the data collection software and port must first be configured using the web interface. The IP address identifies the client to which the data is to be sent, and the port may be used to uniquely identify the instrument to the application. The port must be between 9000 and 9500. The same port may be used for all instruments if the data collection software examines the IP address of the received datagram to identify the instrument. Once

this information has been configured, the Ethernet processor will automatically send real-time data records to the configured address/port. An instrument in Measurement Mode re-enters Measurement Mode shortly after a power-cycle, so the data collection software will immediately receive new data without having to re-establish a connection.

3.3.6 PTP/NTP

Precision Time Protocol (IEEE-1588) is a standard used for distributing a high-resolution absolute time throughout an Ethernet network. The Signature series instrument can be configured to act as a slave to an existing PTP master clock (customer supplied) located in the same Ethernet LAN. The instrument contains a high-resolution clock which is synchronized and conditioned using PTP when enabled. The timestamps contained within the data records are then generated from this clock. When synchronized, these timestamps are typically aligned to within ~10 microseconds.

The PTP master clock must use UDP (layer three) and be configured for two-step operation with an end-to-end delay mode in order to be compatible with the Signature series PTP implementation. Using PTP does not affect the choice of UDP or TCP for the transport of data.

Network Time Protocol provides time sync typically to within +-1 ms on a local area network and +-10ms across a wide area network. The NTP Server IP address must be correctly configured for NTP to operate.

PTP/NTP is enabled on the SEC processor from the Signature web interface.

3.4 Serial Operation

The AD2CP can also use serial communications, provided that it has been ordered with or upgraded to include an 8-pin serial connector (replacing the 2-pin power connector). The serial cable can be used for either RS232 or RS422 comms, which is chosen using the SETINST command.

Serial communication can only be achieved through commands, meaning that the GUI of the SignatureDeployment software cannot be used. Instead, if you connect through a serial cable to SignatureDeployment a terminal window will open. You can also connect to the Signature through any other terminal.

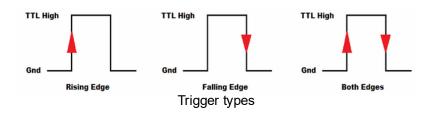
3.5 Triggers

The rigger functionality allows for customized ping timing for Signature Series instruments, including setting up instruments in Master/Slave configurations, where one instrument is used as a Master, sending out a trigger, and one or more other instruments are used as Slaves. An external device can also be used as a master with all Signature units operating as slaves.

The AD2CP electronics that power all Signature Series instruments offers four main types of triggers, although actual availability for each instrument depends on the harness and cable used with the instrument.

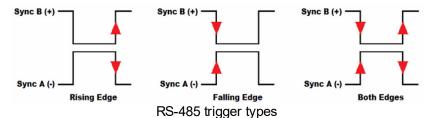
- Internal Sampling
- TTL trigger
- RS-485 trigger
- Command trigger

For all trigger types, the following considerations apply:


- When triggered, the instrument will perform a complete ping (Pulse Transmit and Receive Sequence).
- After the complete ping is done, the instrument goes back to monitoring the trigger input line.
- Any triggers asserted during an ongoing ping are ignored.
- As the AD2CP platform supports multiple ping types (e.g. bottom-track, HR, velocity on slanted beams, etc.), and these may be transmitted on different transducers based on each instrument's configuration, the order of the transducers (and ping types) sent for each triggers follows the userdefined configuration. If precise ping synchronization is desired, the slot table returned from the READCFG command, together with each ping's exact timing as shown in a standard data file, will prove useful in determining exact timing.
- Latencies are not considered in the scope of this documentation, and are generally less than 10 ms. If precise ping synchronization is required, please contact Nortek for details.
- Information on each trigger type is provided below, and the SETTRIG command provides the syntax used to enable each type of trigger, as well as further details on how to configure for instruments for a Master/Slave setup.

Internal Sampling (INTSR)

Internal triggers determined by the selected sampling rate. The instrument self-triggers using its internal clock and the user-defined sampling rate.


TTL Trigger

The AD2CP can trig on either Rising Edge, Falling Edge or Both Edges of a TTL signal. The requirements for the TTL input is $V_{low} < 0.7 V$ and $V_{high} > 2.5V$. The TTL input tolerate voltages between 0-5.5 V. The pulse length should be minimum 1 ms.

RS-485 Trigger

An RS-485 signal can be used to trig the AD2CP, either Rising Edge, Falling Edge or Both Edges of an RS-485 signal. The following figure shows the polarities of the differential RS-485 signal pair for the trigger types.

Command Trigger

When the TRIG parameter of the SETTRIG command is set to "COMMAND" the AD2CP is triggered by sending a TRIG command, followed by CR (Carriage Return) and/or LF (Line Feed). The trigger time will be when the first character of the [CR LF] is received.

4 Using the Command Interface

Note that the Nortek Signature Series products command interface are ASCII based and line oriented (commands terminated with CR/LF). All commands should be set explicitly. The .deploy file created by the Deployment software is command-based and can be read directly into the command interface. Entering the .deploy file into the command interface can be a good starting point before modifying certain parameters using individual commands. Alternatively, use the Deployment software's "Customize..." function to create a .deploy file and input commands in the #CustomCommands section. All commands available for customizing your configuration are described in the Command chapter. Each command has a subset of arguments that is listed in the respective chapter. Note that some of the commands requires at least one argument to be used.

Comprehensive validation and error handling is implemented. The configuration is verified when sending the **SAVE** command. If **SAVE** is not used, the deployment plan will be validated when sending the **START** or **DEPLOY** command. If there is anything wrong with the deployment plan, i.e. some of the parameters are entered with values outside their specific range, an **ERROR** will be returned. To get more details about why the error occurred, use the **GETERROR** command. Invalid configurations return the error with limits directly, so that each subsequent error can be handled until a valid configuration is achieved.

For example, if entering **SETPLAN,MIAVG=5000**, you will receive an **OK**. But when saving or deploying, you will receive an **ERROR**. When following up with the **GETERROR** command, you will receive the following:

134, "Invalid setting: Plan Profile Interval", "GETPLANLIM, MIAVG=([1;3600])"

which indicates that the measurement interval must be within 1:3600 seconds and you have to go back and reconfigure this before you can proceed.

The valid range for the various arguments can also be retrieved by using the **GETxxxLIM** commands where **xxx** is the command you want the limits for. For example, if you need the limits for all arguments associated with the **SETAVG** command, you send the **GETAVGLIM** command. You can also retrieve the limits for one specific argument by including this when sending the **GETxxxLIM** command. As in the example above when you are configuring the measurement interval for the average measurements, you can get the valid range beforehand by sending the command **GETPLANLIM,MIAVG**. The same goes for arguments associated with all types of applications, the valid ranges for burst measurements can be retrieved by the command **GETBURSTLIM**.

Note the difference between **DEPLOY** and **START**, the latter will immediately start a measurement any time the instrument state returns to Measurement Mode such as by applying power or timeout from Data Retrieval Mode. If **DEPLOY** is used, be aware that if the deployment time has passed when the battery is connected, the instrument will resynchronize its data sampling according to the deployment time and the instrument configuration. This means you may have to wait for one average measurement interval or one burst measurement interval before the instrument starts to ping.

For examples on how to use the command interface, see the following chapters with User Cases.

4.1 GETALL

GETALL retrieves all relevant configuration information for the instrument. This information can either be displayed on the command line or saved to a data file. For Nortek post-processing software to read a valid .ad2cp file it must contain both the Header and Data Record. The Header information can be obtained by using the command GETALL.

Argument	Description
FN	Write the output to this file

Example: The result from a GETALL command on a Signature1000 with a default Average plan. Different plans, e.g. with a Burst measurement enabled, will produce different parameters from a GETALL command. Calibration values are not modifiable.

Parameter	Example	Description	
GETCLOCKSTR	TIME="2021-06-08 16:12:44"	Current time on the instrument real-time clock	
ID	STR="Signature1000",SN=900002	Instrument name and serial number	
GETHW	FW=2214,FPGA=185,DIGITAL="H- 0",INTERFACE="D-1",ANALOG="C- 4",SENSOR="C- 0(AHRS)",BOOT=12,FWMINOR=12	Firmware and electronics revision numbers	
BOARDSENSG ET	AV=23,NB=5,HF=1000,TTR=2.0000,TTRB5=2.000 0,TTRB5AUX=0.0000,AUXRS=0	Production information	
GETPWR	PLAN=53.51,BURST=0.00,AVG=50.78,PLAN1=0.0 0,BURST1=0.00,AVG1=0.00,TOTAL=53.51	Power consumption in mW for current plan	
GETMEM	PLAN=0.388,BURST=0.000,AVG=0.388,PLAN1=0. 000,BURST1=0.000,AVG1=0.000,TOTAL=0.388	Memory consumption in MB for current plan	
GETPRECISION	AVGHORZ=0.95,BURSTHORZ=-9.99,BEAM5=- 9.99,AVGBEAM=0.57,BURSTBEAM=-9.99	Horizontal and along-beam precision values	
GETPLAN	MIAVG=600,AVG=1,DIAVG=0,VD=0,MV=10,SA=3 5.0,BURST=0,MIBURST=3600,DIBURST=0,SV=0. 00,FN="Data.ad2cp",SO=0,FREQ=1000,NSTT=0	Current PLAN settings	
GETAVG	NC=60,CS=0.50,BD=0.10,CY="BEAM",PL=0.0,AI =60,VP=0.000,VR=2.50,DF=3,NPING=60,NB=4,C H=0,MUX=0,BW="BROAD",ALTI=0,BT=0,ICE=0,A LTISTART=0.10,ALTIEND=30.00,RAWALTI=0	Current AVG settings	
GETXFAVG	ROWS=4,COLS=4,M11=1.1831,M12=0.0000,M13 =-1.1831,M14=0.0000,M21=0.0000,M22=- 1.1831,M23=0.0000,M24=1.1831,M31=0.5518,M32 =0.0000,M33=0.5518,M34=0.0000,M41=0.0000,M 42=0.5518,M43=0.0000,M44=0.5518	Transformation matrix values	
GETUSER	POFF=9.50,DECL=0.00,HX=0,HY=0,HZ=0	Pressure and compass offset values	

GETINST	BR=9600,RS=422,LED="ON24H",ORIENT="AHRS 3D",CMTOUT=300,DMTOUT=60,CFMTOUT=60	Instrument settings
GETCOMPASS CAL	DX=247,DY=138,DZ=-40,M11=32418,M12=- 935,M13=-7,M21=1229,M22=32767,M23=- 213,M31=-979,M32=1367,M33=31081	Current compass calibration values
READAHRS	STR="OSv6m1_ng2_1.0.0.2 Oct 29 2019, SerialNumber=60000371,type=OS3DM"	If present; AHRS name and firmware version
RECSTAT	SS=512,CS=32768,FC=4002381824,TC=4040163 328,VS=4040163328	Recorder status: SS - Sector Size (bytes) CS - Cluster Size (bytes) FC - Number of bytes in free Clusters TC - Total number of bytes in Clusters VS - Volume Size FF - Number of free files TF - Max number of recorder files
	BEAM=1,THETA=25.00,PHI=0.00,FREQ=1000,BW =25,BRD=1,HWBEAM=1,ZNOM=60.00,DIA=0.0	Instrument beam configuration
	BEAM=2,THETA=25.00,PHI=- 90.00,FREQ=1000,BW=25,BRD=1,HWBEAM=2,Z NOM=60.00,DIA=0.0	
BEAMCFGLIST	BEAM=3,THETA=25.00,PHI=180.00,FREQ=1000, BW=25,BRD=1,HWBEAM=3,ZNOM=60.00,DIA=0. 0	
	BEAM=4,THETA=25.00,PHI=90.00,FREQ=1000,B W=25,BRD=1,HWBEAM=4,ZNOM=60.00,DIA=0.0	
	BEAM=5,THETA=0.00,PHI=0.00,FREQ=1000,BW =25,BRD=1,HWBEAM=5,ZNOM=60.00,DIA=0.0	
	BEAM=1,P0=1.00000e+02,P1=0.00000e+00,P2=0 .00000e+00,P3=0.00000e+00,P4=0.00000e+00,T1 =0.00000e+00	Instrument beam configuration
	BEAM=2,P0=1.00000e+02,P1=0.00000e+00,P2=0 .00000e+00,P3=0.00000e+00,P4=0.00000e+00,T1 =0.00000e+00	
BEAMIMPLIST	BEAM=3,P0=1.00000e+02,P1=0.00000e+00,P2=0 .00000e+00,P3=0.00000e+00,P4=0.00000e+00,T1 =0.00000e+00	
	BEAM=4,P0=0.00000e+00,P1=0.00000e+00,P2=0 .00000e+00,P3=0.00000e+00,P4=0.00000e+00,T1 =0.00000e+00	
	BEAM=5,P0=0.00000e+00,P1=0.00000e+00,P2=0 .00000e+00,P3=0.00000e+00,P4=0.00000e+00,T1 =0.00000e+00	

	KEY="D1EWY135MB7K7",DESC="Burst Mode",TYPE=2	Installed instrument licences
LISTLICENSE	KEY="E39YR4H2MB7K7",DESC="Averaging Mode",TYPE=1	
	KEY="99BHT6KRMB7K7",DESC="16GB Recorder",TYPE=11	
CALCOMPGET	DX=247,DY=138,DZ=-40,M11=32418,M12=- 935,M13=-7,M21=1229,M22=32767,M23=- 213,M31=-979,M32=1367,M33=31081	Compass calibration values
CALTEMPGET	SC=1.00000	Water temperature calibration value
CALTILTGET	PO=0.00,RO=0.00,MAGG=1,HO=0.00	Tilt sensor calibration values
	AX=1.000000E+00,B0X=-5.838510E- 04,B1X=4.038870E-03,B2X=1.900822E- 03,B3X=0.000000E+00,A1X=-3.905594E- 05,A2X=-2.741814E-06,A3X=0.000000E+00	Accelerometer calibration values
CALACCLGET	AY=1.000000E+00,B0Y=-8.213488E- 03,B1Y=9.444051E-03,B2Y=1.928553E- 03,B3Y=0.000000E+00,A1Y=-3.572553E- 05,A2Y=2.868473E-06,A3Y=0.000000E+00	
	AZ=1.000000E+00,B0Z=1.251627E- 02,B1Z=8.488446E-05,B2Z=1.951933E- 03,B3Z=0.000000E+00,A1Z=8.686632E- 05,A2Z=2.995133E-06,A3Z=0.000000E+00	
	AX=1.092663E+00,B0X=-1.458604E-02,B1X=- 1.925275E-03,B2X=-5.933643E- 05,B3X=0.000000E+00,A1X=1.739189E-04,A2X=- 7.793307E-06,A3X=0.000000E+00	Gyro calibration values
CALGYROGET	AY=1.086592E+00,B0Y=1.325879E- 02,B1Y=4.371032E-04,B2Y=3.761053E- 05,B3Y=0.000000E+00,A1Y=-2.659187E- 04,A2Y=2.339482E-06,A3Y=0.000000E+00	
	AZ=1.087252E+00,B0Z=-4.356480E- 02,B1Z=5.960464E-08,B2Z=1.316518E- 05,B3Z=0.000000E+00,A1Z=4.348904E- 05,A2Z=2.026558E-06,A3Z=0.000000E+00	
CALPRESSGET	MT=1,RREF=4.530000000e+02,RB0=0.0000000 00e+00,RB1=0.000000000e+00,RB2=0.00000000 00e+00,RB3=0.000000000e+00,T0=- 3.7026600000e+03,T1=2.7309500000e+00,T2=- 6.8649568750e-04,T3=5.9816006250e- 08,ID="L0165"	Pressure sensor calibration values
CALPRESSCOE FFGET	A0=5.4010770000e+01,A1=-4.2163353130e- 02,A2=1.1131470000e-05,A3=-9.9709175000e-	Pressure sensor calibration coefficient values

	10,B0=-3.1236960000e+00,B1=2.9407478130e- 03,B2=-7.7748162500e-07,B3=6.8127600000e-11	
	C0=-7.5628700000e-03,C1=6.2269425000e- 06,C2=-1.6925208750e-09,C3=1.5250131250e- 13,D0=4.1404246880e-05,D1=-3.4084846880e- 08,D2=9.3360593750e-12,D3=-8.5032206250e-16	
CALROTACCLG ET	M11=0.99685,M12=- 0.00455,M13=0.01998,M21=0.00674,M22=0.99572 ,M23=-0.00375,M31=- 0.02500,M32=0.00529,M33=0.99523	Accelerometer rotation matrix values
CALROTGYROG ET	M11=1.00000,M12=-0.01459,M13=- 0.00088,M21=0.00841,M22=1.00000,M23=- 0.01623,M31=- 0.02101,M32=0.00059,M33=1.00000	Gyro rotation matrix values
CALECHOGET	CHA0=0.00,CHB0=0.00,CHC0=0.00	Echosounder calibration values

4.2 User Cases

4.2.1 Checking instrument state over Ethernet

In this example a user connects to and powers the Ethernet port, but is unsure of the current operational state. If power is applied while in measurement mode, it will continue the measurement but not wake the Ethernet processor (BBP). If power is applied while in deployment state a re-synch will occur and resume sleep mode. Hence it is necessary to use **BBPWAKEUP** in both cases.

A typical sequence starts by wanting to know the state of the instrument before proceeding with either a new measurement or data retrieval.

```
% Waking up the BBP to make sure commands are received
BBPWAKEUP
$PNOR,OK*2B
% Inquiring the state the of the instrument
GETSTATE
$PNOR,GETSTATE,MODE=0010,DEPTIME=27521,MEASTIME=27521,CURRTIME="2015-09-28
11:21:16",WAKEUP=2,INTPROC=0*01
$PNOR,OK*2B
```

This indicates the instrument has been configured to deploy and has started its scheduled deployment for 27521 seconds. See GETSTATE for more information.

Depending on the desired action, send Break usually followed by; either MC to enter command mode, RM for data retrieval or START/DEPLOY/CO to start/schedule/continue a deployment.

4.2.2 Download telemetry file via FTP

In this example, a Signature1000 is set up to measure currents for 2 minutes every 10 minutes and waves every hour (4096 samples at 4 Hz). The raw current data are processed and a subset is saved as a telemetry file and made available on FTP.

Configuration example:

```
% Recommended starting point for configuration file
SETDEFAULT,CONFIG
$PNOR,OK*2B
```

```
% Configuration for instrument:
```

```
SETPLAN,MIAVG=600,AVG=1,DIAVG=0,VD=0,MV=10,SA=35,BURST=1,MIBURST=3600,DIBUR
ST=0,SV=0,FN="Ex3.ad2cp",SO=0,FREQ=1000
$PNOR,OK*2B
SETAVG,NC=21,CS=1,BD=0.2,CY="ENU",PL=0,AI=120,VR=2.5,DF=3,NPING=13,NB=4,CH=
0,MUX=0,BW="BROAD",ALTI=0,BT=0,ICE=0,ALTISTART=1,ALTIEND=30
$PNOR,OK*2B
SETBURST,NC=13,NB=4,CS=1,BD=9.5,CY="BEAM",PL=0,SR=4,NS=4096,VR=2.5,DF=3,NPI
NG=1,CH=0,VR5=2.5,ALTI=1,BT=0,DISV=0,RAWALTI=1,ALTISTART=4.8,ALTIEND=33.1
$PNOR,OK*2B
```

```
% Configuration for telemetry file:
SETTMAVG,EN=1,CD=2,PD=1,AVG=120,TV=1,TA=1,TC=1,CY="ENU",FO=1,SO=0,DF=100
$PNOR,OK*2B
SAVE,CONFIG
$PNOR,OK*2B
DEPLOY,TIME="2014-11-12 14:40:00"
$PNOR,OK*2B
```

Go to *ftp://your-IP-address* to find the telemetry file (telemetryfile.bin). Here is part of the result from the above configuration. Note that the data were collected in air.

```
$PNORI, 4, Signature1000900002, 4, 11, 0.20, 1.00, 0*1B
$PNORS,091715,143440,00000000,2A4C0000,14.3,1300.0,278.3,15.7,-33.0,0.000,-
262.45,0,0*65
$PNORC,091715,142440,1,0.24,-1.35,-2.21,-
1.69,1.37,169.7,C,79,84,67,102,11,13,8,11*2B
$PNORC,091715,142440,3,0.64,-0.28,-1.91,-
1.32,0.70,113.9,C,79,84,66,96,12,14,7,20*13
$PNORC,091715,142440,5,0.08,-0.50,-1.76,-
1.48,0.51,171.2,C,78,84,66,92,11,13,7,24*1D
$PNORC,091715,142440,7,-0.37,0.97,-1.02,-
1.07, 1.04, 339.0, C, 78, 84, 66, 67, 11, 14, 10, 10*21
$PNORC,091715,142440,9,-0.94,0.57,-0.76,-
1.11,1.10,301.1,C,78,83,65,69,12,15,9,10*10
$PNORC,091715,142440,11,-0.37,0.76,-0.95,-
1.06,0.85,334.0,C,78,83,65,66,13,15,8,8*14
$PNORC,091715,142440,13,0.05,-0.25,-1.64,-
1.36,0.26,168.4,C,78,84,66,82,11,14,9,33*2F
$PNORC,091715,142440,15,-0.20,0.20,-1.36,-
1.32,0.28,314.6,C,78,84,66,67,11,13,9,7*16
$PNORC,091715,142440,17,0.19,0.17,-1.47,-
1.13,0.25,48.0,C,78,84,65,69,12,16,9,2*0D
$PNORC,091715,142440,19,-0.91,0.45,-0.90,-
1.19,1.02,296.5,C,78,84,65,66,12,14,10,8*27
$PNORC,091715,142440,21,-0.49,0.66,-1.00,-
1.11,0.82,323.1,C,78,84,65,67,12,14,11,10*13
```

After downloading the telemetry file, erase it either via FTP or commands. Only the telemetry file can be deleted using FTP.

% Erasing telemetry file ERASETM,9999 \$PNOR,OK*2B

% Continuing the configured deployment plan

CO \$PNOR,OK*2B

Note that the instrument does not process wave data internally (read more about this in the Operations Manual, if interested), thus only current data will be output in the telemetry file.

For use with external controller it can be interesting to note the following: if the instrument is started at e.g. 12:00, the first current profile is finished at 12:02 (120 seconds) and the next starts about 12:10. That leaves us with 8 minutes to download the telemetry file to FTP before next current profile starts. The clock drifts with about 1 sec/week. Since DEPLOY was used the measurement intervals will resynchronize according to the deployment time and the instrument configuration (see DEPLOY for more information), thus is should be easier to schedule automatic data download as the window 12:02 to 12:10 remains.

4.2.3 Download telemetry file over serial port

In this example the user wishes to download the telemetry file in 4096 byte chunks. To achieve this you must connect via the Terminal Emulator or other console while the instrument is measuring.

```
% Send Break
CONFIRM
OK
%Going into Data Retrieval Mode
RM
NORTEK AS.
Version 2214 12 (Apr 15 2021 07:31:19)
DATA RETRIEVAL MODE
$PNOR,OK*2B
% Checking the size of the telemetry file. Return in bytes
TMSTAT
95558
$PNOR,OK*2B
% Outputting the telemetry file over serial port in 4096 byte chunks
DOWNLOADTM, 0, 4096, CKS=1
[OUTPUT]
$PNOR,OK*2B
% Next 4096 byte chunk, etc
DOWNLOADTM, 4097, 4096, CKS=1
[OUTPUT]
$PNOR,OK*2B
% Erasing telemetry file
ERASETM, 9999
$PNOR,OK*2B
```

```
% Continuing the configured deployment plan
CO
$PNOR,OK*2B
```

Copy the returned text and paste to file, or check "Record to file" before retrieving the file and the file will appear by default in: C:\Users\xxxx\Documents\Nortek\Deployment\Online.

Parameters can be added to the DOWNLOADTM command to set start address, length of file, etc. (see section DOWNLOADTM).

4.2.4 View memory and power requirements, Signature100

If you create a custom deployment outside of the Deployment Wizard, you will not be able to open it in the software. This means that you will not be able to see the power and memory requirements of your plan in the summary pane. However, once you have configured the instrument, you can use commands to retrieve the requirements for the plan you have chosen.

```
% Retrieve power requirements for the default Signature100 plan (mWatts)
GETPWR
$PNOR,GETPWR,PLAN=268.61,BURST=0.00,AVG=266.94,PLAN1=0.00,BURST1=0.00,AVG1=
0.00,TOTAL=268.61*5F
$PNOR,OK*2B
% Retrieve memory requirements for the default Signature100 plan
(Mbytes/hour)
GETMEM
```

\$PNOR,GETMEM,PLAN=0.103,BURST=0.000,AVG=0.103,PLAN1=0.000,BURST1=0.000,AVG1 =0.000,TOTAL=0.103*72 \$PNOR,OK*2B

4.2.5 Average velocity data and NMEA, Signature 55

Either use the Deployment wizard to create a .deploy file which can be uploaded via the Terminal Emulator, or set the configuration through commands (seen below). The .deploy file can also be uploaded then customized via commands once in the Terminal Emulator.

In this example: Signature55, configured to alternate between fine and coarse current profiles (3:1). In this case the user wanted to download the averaged fine profile upon request.

Configuration example:

```
% Recommended starting point for configuration file
SETDEFAULT,CONFIG
$PNOR,OK*2B
% Setting plan for "Fine" profile
SETPLAN,MIAVG=600,AVG=1,DIAVG=0,VD=0,MV=10,SA=35,BURST=0,MIBURST=120,DIBURS
T=0,SV=0,FN="Data.ad2cp",SO=0,FREQ=75
$PNOR,OK*2B
```

```
SETAVG, NC=109, CS=5, BD=2, CY="ENU", PL=-
6,AI=180,VR=1,DF=3,NPING=137,NB=3,CH=0,MUX=0,BW="BROAD",ALTI=0,BT=0,ICE=0
$PNOR,OK*2B
% Setting plan for "Coarse" profile
SETPLAN1, MIAVG=1800, AVG=1, DIAVG=0, VD=0, MV=10, SA=35, BURST=0, MIBURST=120, DIBU
RST=0, SV=0, FN="Data.ad2cp", SO=0, FREQ=55
$PNOR,OK*2B
SETAVG1, NC=54, CS=20, BD=2, CY="ENU", PL=-
2,AI=180,VR=1,DF=3,NPING=60,NB=3,CH=0,MUX=1,BW="NARROW",ALTI=0,BT=0,ICE=0
$PNOR,OK*2B
% Setting the alternating measurement intervals and ratios of "Fine" and
"Coarse"
SETALTERNATE, EN=1, PLAN=1380, IDLE=10, PLAN1=180, IDLE1=230
$PNOR,OK*2B
% Setting the telemetry file to average the "Fine" profile over the
averaging interval
SETTMAVG, EN=1, CD=1, PD=1, AVG=180, TV=1, TA=1, TC=1, CY="ENU", FO=1, SO=0, DF=100
$PNOR,OK*2B
SAVE, CONFIG
$PNOR, ERROR*77
% Finding where the error in the configuration is
GETERROR
$PNOR,GETERROR,NUM=56,STR="Invalid setting: Avg Average Interval too low
for
               configured
                                                                    profiling
        the
                               number
                                          of
                                                  pings
                                                            and
distance",LIM="GETAVG1LIM,AI=([360;1800])"*6E
$PNOR,OK*2B
% Number of pings too high compared to desired averaging interval with
multiplex enabled.
SETAVG1, NPING=30
$PNOR,OK*2B
SAVE, CONFIG
$PNOR,OK*2B
```

Note that SETTMAVG,AVG must equal the AI set by SETAVG,AI. To set telemetry averaging for the alternate plan use SETTMAVG1, note that these will be recorded to the same telemetryfile.bin file.

Enter START or DEPLOY, TIME to begin the deployment.

4.2.6 Disable a beam, Signature 500

Objective: disable a beam in the Burst measurements that you know will be blocked by an object when the instrument is deployed.

```
% Upload prepared .deploy file to the instrument via the Terminal Window.
The file is read in line-by-line.
$PNOR, SETDEFAULT, ALL*4B
$PNOR, SETPLAN, MIAVG=60, AVG=1, DIAVG=0, VD=0, MV=10, SA=35, BURST=1, MIBURST=1200,
DIBURST=0, SV=0, FN="Data.ad2cp", SO=0, FREQ=1000, NSTT=0*42
$PNOR, SETAVG, NC=21, CS=1, BD=0.2, CY="ENU", PL=0, AI=10, VR=2.5, DF=3, NPING=13, NB=
4, CH=0, MUX=0, BW="BROAD", ALTI=0, BT=0, ICE=0, ALTISTART=0.1, ALTIEND=30, RAWALTI=
1*0B
$PNOR, SETBURST, NC=13, NB=4, CS=1, BD=9.5, CY="BEAM", PL=0, SR=4, NS=4096, VR=2.5, DF
=3,NPING=1,CH=0,VR5=2.5,ALTI=1,BT=0,DISV=0,ECHO=0,RAWALTI=1,ALTISTART=6.9,A
LTIEND=33.1, HR=0, HR5=0*3C
$PNOR, SETTMAVG, EN=0, CD=1, PD=1, AVG=10, TV=1, TA=1, TC=1, CY="ENU", FO=0, SO=1, DF=1
00, DISTILT=0, TPG=0, MAPBINS=0*6D
$PNOR, SAVE, ALL*43
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
% Disable averaging and enable burst measurements.
SETPLAN, AVG=0, BURST=1
$PNOR,OK*2B
% Configure to measure with just 3 beams, and specify which ones to use.
SETBURST, NB=3, CH=234
$PNOR,OK*2B
```

```
% Save the configuration.
SAVE,ALL*43
$PNOR,OK*2B
```

4.2.7 Average telemetry, Signature1000

Objective: send averaged velocity data over the serial line, and save the telemetry file to the instrument recorder for retrieval later in case of communications failure. Deploy the instrument to start at a later time. In this case, NMEA format in the terminal window is enabled.

```
% Upload prepared .deploy file to the instrument via the Terminal Window.
The file is read in line-by-line.
$PNOR,SETDEFAULT,ALL*4B
$PNOR,SETPLAN,MIAVG=60,AVG=1,DIAVG=0,VD=0,MV=10,SA=35,BURST=1,MIBURST=1200,
```

```
DIBURST=0, SV=0, FN="Data.ad2cp", SO=0, FREQ=1000, NSTT=0*42
$PNOR,SETAVG,NC=21,CS=1,BD=0.2,CY="ENU",PL=0,AI=10,VR=2.5,DF=3,NPING=13,NB=
4, CH=0, MUX=0, BW="BROAD", ALTI=0, BT=0, ICE=0, ALTISTART=0.1, ALTIEND=30, RAWALTI=
1*0B
$PNOR, SETBURST, NC=13, NB=4, CS=1, BD=9.5, CY="BEAM", PL=0, SR=4, NS=4096, VR=2.5, DF
=3,NPING=1,CH=0,VR5=2.5,ALTI=1,BT=0,DISV=0,ECHO=0,RAWALTI=1,ALTISTART=6.9,A
LTIEND=33.1, HR=0, HR5=0*3C
$PNOR, SETTMAVG, EN=0, CD=1, PD=1, AVG=10, TV=1, TA=1, TC=1, CY="ENU", FO=0, SO=1, DF=1
00, DISTILT=0, TPG=0, MAPBINS=0*6D
$PNOR, SAVE, ALL*43
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
$PNOR,OK*2B
% Modify SETTMAVG line; enable telemetry, enable file output. Serial output
is already enabled (SO=1).
SETTMAVG, EN=1, FO=1*26
$PNOR,OK*2B
% Save the configuration.
SAVE, ALL*43
$PNOR,OK*2B
% Deploy the instrument and specify a time.
DEPLOY, TIME="2021-06-18 13:00:00"*0C
$PNOR,OK*2B
% The instrument is now measuring, and you will see data start to come
```

```
through the connection.
```

5 Commands

This chapter covers the commands that can be used to control an Signature instrument. Please note that not every command is relevant for every instrument. The commands relevant for your specific instrument depends on the instrument type and licenses.

Some pointers:

- A configuration of the instrument should always start with setting the default configuration, e.g.: SETDEFAULT, CONFIG OK
- All command parameters should be set explicitly, e.g.: SETAVG, NC=10, BD=0.7 OK
- Sometimes you may get an ERROR response after tying to save the configuration or start/deploy the
 instrument. This doesn't necessarily mean that something is wrong with the instrument, but is most
 often a sign that the configuration isn't going to work. Any ERROR response can be interrogated with
 GETERROR, e.g.:

```
SAVE, CONFIG
ERROR
GETERROR
GETERROR, NUM=56, STR="Invalid setting: Avg Average Interval too low
for the configured number of pings and profiling
distance", LIM="GETAVG1LIM, AI=([360;1800])"
OK
```

Here, the instrument is reporting that we have set the average interval to be too short, and it provides the limits for the AI that are allowed if we are going to keep the same number of pings and profiling distance. You could increase the average interval, decrease the number of pings, or decrease the profiling distance (i.e. number/size of cells) to fix the error.

Data Limit Formats

The limits for the various arguments are returned as a list of valid values, and/or ranges, enclosed in parenthesis (). An empty list, (), is used for arguments that are unused/not yet implemented. Square brackets [] signify a range of valid values that includes the listed values. String arguments are encapsulated with "", like for normal parameter handling. A semicolon, ;, is used as separator between limits and values.

The argument format can also be inferred from the limits, integer values are shown without a decimal point, floating point values are shown with a decimal point and strings are either shown with the string specifier, "", or as a range of characters using " for specifying a character.

Examples:

[1;128] – Integer value, valid from 1 to 128

([1300.00;1700.00];0.0) – Floating point value, valid values are 0.0 and the range from 1300.00 to 1700.00.

(['0';'9'];['a';'z'];['A';'Z'];'.') – String argument with valid characters being . and the character ranges a-z, A-Z, 0-9 .

("BEAM") – String argument with BEAM being the only valid string.

(0;1) – Integer value with two valid values, 0 and 1.

NMEA interface example:

```
$PNOR,GETAVGLIM*22
$PNOR,GETAVGLIM,NC=([1;128]),CS=([0.25;2.00]),BD=([0.10;45.00]),CY=(
"BEAM"),PL=([-40.0;0.0];-
100.0),AI=([1;300]),VP=([0.000;0.100]),VR=([1.25;5.00]),DF=([0;3]),N
PING=([1;4])*46
$PNOR,OK*2B
```

Regular interface example:

```
GETPLANLIM
([1;3600]),(0;1),(),([0;2]),(),([0.0;50.0]),(0;1),([10;21600]),(),
([1300.00;1700.00];0.0),(['0';'9'];['a';'z'];['A';'Z'];'.'),(0;1)
OK
```

5.1 List of Commands

Below is a list of all available commands with a short description and information about which mode they can be used in. For more information about each command see the following chapters. The arguments that can be used with each command are described in the respective chapter. Note that some of the commands requires at least one argument to be used.

Command	Description	Mode
SETINST	Set instrument main settings	COMMAND
GETINST	Get instrument main settings	COMMAND
GETINSTLIM	Set instrument main setting limits	COMMAND
SETCLOCK	Set instrument clock	COMMAND RETRIEVAL
GETCLOCK	Get instrument clock	COMMAND RETRIEVAL
SETCLOCKSTR	Set instrument clock as string	COMMAND RETRIEVAL
GETCLOCKSTR	Get instrument clock as string	COMMAND RETRIEVAL
SETPLAN	Set deployment plan parameters	COMMAND
GETPLAN	Get deployment plan parameters	COMMAND
GETPLANLIM	Get deployment plan parameter limits	COMMAND
SETAVG	Set instrument average mode settings	COMMAND
GETAVG	Get instrument average mode settings	COMMAND
GETAVGLIM	Get instrument average mode limits	COMMAND
SETBURST	Set burst settings	COMMAND
GETBURST	Get burst settings	COMMAND
GETBURSTLIM	Get burst setting limits	COMMAND
SETBURSTHR	Set high resolution profile burst settings	COMMAND
GETBURSTHR	Get high resolution profile burst settings	COMMAND
GETBURSTHRLIM	Get high resolution profile burst setting limits	COMMAND
SETECHO	Set echosounder settings	COMMAND
GETECHO	Get echosounder settings	COMMAND
GETECHOLIM	Get echosounder setting limits	COMMAND
READECHO	Read raw echosounder parameters	COMMAND
SETALTERNATE	Set instrument alternating plan configuration	COMMAND
GETALTERNATE	Get instrument alternating plan configuration	COMMAND
GETALTERNATELIM	Get instrument alternating plan limits	COMMAND

GETMEM	Get recorder data memory usage	COMMAND
SETTRIG	Set trigger settings	COMMAND
GETTRIG	Get trigger settings	COMMAND
GETTRIGLIM	Get trigger setting limits	COMMAND
TRIG	Trigger a specified measurement	MEASUREMENT
SETEXTSENSOR	Set external sensor settings	COMMAND
GETEXTSENSOR	Get external sensor settings	COMMAND
GETEXTSENSORLIM	Get external sensor setting limits	COMMAND
GETPWR	Returns the power consumption in mW for the various measurements enabled as well as the overall value	COMMAND
GETPRECISION	Returns the precision for primary plan	COMMAND
GETPRECISION1	Returns the precision for secondary plan	COMMAND
SETUSER	Set instrument user settings	COMMAND
GETUSER	Get instrument user settings	COMMAND
GETUSERLIM	Get instrument calibration parameter limits	COMMAND
ID	Get instrument Id	COMMAND
SETDEFAULT	Reload default settings	COMMAND
SAVE	Save settings for next measurement	COMMAND
DEPLOY	Deploy the instrument	COMMAND
START	Start the instrument	COMMAND
MC	Go into command mode	CONFIRMATION
RM	Go into data retrieval mode	CONFIRMATION
СО	Go into measurement mode	CONFIRMATION RETRIEVAL
FWRITE	Write tag or string to file	COMMAND CONFIRMATION RETRIEVAL
POWERDOWN	Set instrument in sleep mode	COMMAND
ERASE	Erase all files on the recorder	COMMAND
FORMAT	Format the recorder	COMMAND
SECREBOOT	Reboots the SEC	COMMAND
LISTFILES	Lists the files on instrument	COMMAND RETRIEVAL
DOWNLOAD	Read file data	COMMAND RETRIEVAL

INQ	Inquires the instrument state	COMMAND CONFIRMATION RETRIEVAL MEASUREMENT
GETSTATE	Returns information about the current operational state of the instrument	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
GETERROR	Returns a full description of the last error condition to occur	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
GETALL	Retrieves all relevant configuration information for the instrument	COMMAND
RECSTAT	Return recorder state	COMMAND RETRIEVAL
GETMISCLIM	This command returns configuration limits that cannot be returned through the relevant commands	COMMAND
GETXFAVG	Returns the "Beam to XYZ" transfer matrix for average measurements	COMMAND
GETXFBURST	Returns the "Beam to XYZ" transfer matrix for burst measurements	COMMAND
SETTMAVG	Set averaging mode telemetry settings	COMMAND
GETTMAVG	Get averaging mode telemetry settings	COMMAND
GETTMAVGLIM	Get instrument averaging mode limits	COMMAND
SETTMBURST	Set burst mode telemetry settings	COMMAND
GETTMBURST	Get burst mode telemetry settings	COMMAND
GETTMBURSTLIM	Get instrument burst mode limits	COMMAND
SETTMALTI	Set altimeter telemetry settings	COMMAND
GETTMALTI	Get altimeter telemetry settings	COMMAND
GETTMALTILIM	Get instrument altimeter limits	COMMAND
TMSTAT	Returns the length of the telemetry file	COMMAND RETRIEVAL
DOWNLOADTM	Read telemetry file data	COMMAND RETRIEVAL
STOREHEADERTM	Stores the GETALL to the telemetry file	COMMAND
ERASETM	Erase the telemetry file	COMMAND RETRIEVAL
TAG	Write a Tag to output file and data output	COMMAND CONFIRMATION

		MEASUREMENT RETRIEVAL
SETUSERECHO- MAJORANGLE	Set calibration values for major beam angle	COMMAND
GETUSERECHO- MAJORANGLE	Get calibration values for major beam angle	COMMAND
GETUSERECHO- MAJORANGLELIM	Get limits for calibration values for major beam angle	COMMAND
SETUSERECHO- MAJOROFFSET	Set calibration values for major beam angle offset	COMMAND
GETUSERECHO- MAJOROFFSET	Get calibration values for major beam angle offset	COMMAND
GETUSERECHO- MAJOROFFSETLIM	Get limits for calibration values for major beam angle offset	COMMAND
SETUSERECHO- MINORANGLE	Set calibration values for minor beam angle	COMMAND
GETUSERECHO- MINORANGLE	Get calibration values for minor beam angle	COMMAND
GETUSERECHO- MINORANGLELIM	Get limits for calibration values for minor beam angle	COMMAND
SETUSERECHO- MINOROFFSET	Set calibration values for minor beam angle offset	COMMAND
GETUSERECHO- MINOROFFSET	Get calibration values for minor beam angle offset	COMMAND
GETUSERECHO- MINOROFFSETLIM	Get limits for calibration values for minor beam angle offset	COMMAND
SETUSERECHOGAIN	Set calibration values for gain	COMMAND
GETUSERECHOGAIN	Get calibration values for gain	COMMAND
GETUSERECHOGAINLIM	Get limits for calibration values for gain	COMMAND
SETUSERECHO- TWOWAYANGLE	Set calibration values for two way beam angle	COMMAND
GETUSERECHO- TWOWAYANGLE	Get calibration values for two way beam angle	COMMAND
GETUSERECHO- TWOWAYANGLELIM	Get limits for calibration values for two way beam angle	COMMAND
PTPSET	Set precision time protocol parameters	COMMAND
PTPGET	Get precision time protocol parameters	COMMAND
BBPWAKEUP	Wakes up the Doppler processor (ethernet interface only)	COMMAND CONFIRMATION MEASUREMENT

		RETRIEVAL
SETWAVEPROC	Set wave processing settings	COMMAND
GETWAVEPROC	Get wave processing settings	COMMAND
GETWAVEPROCLIM	Get wave processing setting limits	COMMAND
SETTMWAVE	Set wave telemetry settings	COMMAND
GETTMWAVE	Get wave telemetry settings	COMMAND
GETTMWAVELIM	Get wave telemetry setting limits	COMMAND
GETHW	Returns hardware specifications	COMMAND CONFIRMATION MEASUREMENT RETRIEVAL
ADDLICENSE	Add license key	COMMAND
DELETELICENSE	Delete license key	COMMAND
LISTLICENSE	Lists all license keys in instrument	COMMAND

5.2 Instrument main settings

Commands: SETINST, GETINST, GETINSTLIM, Command type: CONFIGURATION Mode: COMMAND

Instrument main settings

Argument	Description
BR	Baud Rate 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 625000, 1250000 Unit: [bit/s]
RS	Serial protocol 232, 422
LED	Enable/disable LED blink in head. When set to "ON24H" the LED will illuminate the first 24 hours of the measurement. "OFF": Turn LED Off "ON": Turn LED On "ON24H": Turn LED On for 24 hours
ORIENT	Sets the instrument orientation. Not used for DVL. "AUTOXUPDOWN": Auto X up/down "AUTOYUPDOWN": Auto Y up/down "AUTOZUPDOWN": Auto Z up/down "ZUP": Z up "ZDOWN": Z down

	"XUP": X up "XDOWN": X down "YUP": Y up "YDOWN": Y down "AHRS3D": The instrument will detect and change the orientation as the instrument is moved. Used if the instrument has an AHRS installed and does not have a constant defined UP direction
СМТОИТ	Command mode timeout Unit: [s]
DMTOUT	Data retrieval mode timeout Unit: [s]
CFMTOUT	Confirmation mode timeout Unit: [s]

SETINST

Set instrument main settings

Example: SETINST, LED="ON"

GETINST

Get instrument main settings

Example:

```
GETINST, BR=460800, RS=232, LED="ON", ORIENT="AUTOZUPDOWN", CMTOUT=300, DM TOUT=60, CFMTOUT=60
```

GETINSTLIM

Set instrument main setting limits

5.3 Clock settings

Commands: SETCLOCK, GETCLOCK, Command type: CONFIGURATION Mode: COMMAND, RETRIEVAL

Instrument Real Time Clock specified in date parts

Argument	Description
YEAR	The year, e.g. 2020

	Values: [0; 9999]
MONTH	The number of month 1-12 (Jan = 1) Values: [1; 12]
DAY	The number day of month 1-31 Values: [1; 31]
HOUR	The hour of day 0-23 Values: [0; 23]
MINUTE	The minute of hour 0-59 Values: [0; 59]
SECOND	The second of minute 0-59 Values: [0; 59]

Note: Note that all parameters must be set when using the set command

SETCLOCK

Set instrument clock

Example:

SETCLOCK, YEAR=2020, MONTH=11, DAY=28, HOUR=13, MINUTE:15, SECOND=45

GETCLOCK

Get instrument clock

Example:

GETCLOCK 2022,12,13,15,24,33 OK

5.4 Clock settings as strings

Commands: SETCLOCKSTR, GETCLOCKSTR, Command type: CONFIGURATION Mode: COMMAND, RETRIEVAL

Set or retrieve the Real Time Clock using a string. Must use the format as shown: yyyy-MM-dd HH:mm:ss

Argument	Description
TIME	Text string with this format yyyy-MM-dd HH:mm:ss (use UTC)

SETCLOCKSTR

Set instrument clock as string

Example:

SETCLOCKSTR, TIME="2020-11-12 14:27:42"

GETCLOCKSTR

Get instrument clock as string

Example:

GETCLOCKSTR GETCLOCKSTR, TIME = "2014-11-12 14:27:42"

5.5 Deployment plan parameters

Commands: SETPLAN, GETPLAN, GETPLANLIM, Command type: CONFIGURATION Mode: COMMAND

Set and get high-level plan configuration settings.

Argument	Description
MIAVG	Averaging measurements interval Unit: [s]
AVG	Enable(1)/disable(0) averaging measurements.
SA	Salinity. Unit: [ppt]
BURST	Enable(1)/disable(0) burst measurements.
MIBURST	Burst measurements interval. Unit: [s]
SV	Sound velocity. SV = 0 will set sensor to use measured sound velocity Unit: [m/s]
FN	Filename of the raw data file where all the measured binary data will be stored. If FN="", no data is stored on the recorder. FN must be changed if a file FN with a different configuration already exists on the recorder. Values: ['a'; 'z']; ['A'; 'Z']; ['0'; '9']; '_; '.' Max Length: 30
SO	Enable(1)/disable(0) serial output With this option enabled, the instrument will stream all collected raw binary data live, either over serial or ethernet connection.
FREQ	Transmit frequency. This is normally the instruments (one) frequency. In the case of the Signature 55 we may choose between 55Hz or 75Hz. Unit: [khz]

NSTT Number slot time table. Set to 0 giving the default number of slots	
--	--

Note: The valid range for the various arguments should be verified using the GETPLANLIM command, as the values listed here may change with firmware versions and instrument frequencies.

SETPLAN

Set deployment plan parameters

Example: SETPLAN, FREQ=75

GETPLAN

Get deployment plan parameters

GETPLANLIM

Get deployment plan parameter limits

5.6 Average mode settings

Commands: SETAVG, GETAVG, GETAVGLIM, Command type: CONFIGURATION Mode: COMMAND

The instrument averaging mode settings and relevant limits.

Argument	Description
NC	Number of cells
CS	Cell size Unit: [m]
BD	Blanking distance Unit: [m]
DF	Data format 3: DF3 Binary v3
СҮ	Co-ordinate system BEAM, XYZ, ENU
PL	Power level (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). Unit: [dB] Values: [-20; 0]; -100
AI	Average interval Unit: [s]

VR	Velocity range along beam Unit: [m/s]
NPING	Number of pings
NB	Number of beams
СН	Beam selection. E.g. CH=123 will enable beams 1, 2 and 3.
MUX	Enable(1)/disable(0) multiplexing. 0: ping all beams in parallel 1: ping beams in sequence
BW	Bandwidth selection. NARROW, BROAD
ALTI	Enable(1)/disable(0) altimeter measurements
вт	Enable(1)/disable(0) bottom tracking
ICE	Enable(1)/disable(0) ice tracking
ALTISTART	Altimeter start Unit: [m]
ALTIEND	Altimeter start Unit: [m]
RAWALTI	Raw altimeter recording interval

Note: The actual valid range for the various parameters for your specific instrument and firmware can be found by using the GETAVGLIM command. This command has the same arguments as the SETAVG/GETAVG commands shown in the list above. The output format for limits is described in Data Limit Formats

SETAVG

Set instrument average mode settings

Example: SETAVG, BD=1

GETAVG

Get instrument average mode settings

GETAVGLIM

Get instrument average mode limits

5.7 Burst settings

Commands: SETBURST, GETBURST, GETBURSTLIM, Command type: CONFIGURATION Mode: COMMAND

Burst profile settings and relevant limits.

Argument	Description
NC	Number of cells.
NB	Number of beams.
CS	Cell size. Unit: [m]
BD	Blanking distance. Unit: [m]
DF	Data format 3: DF3 Binary v3
СҮ	Co-ordinate System. BEAM, XYZ, ENU
PL	Power level (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). This parameter is instrument dependent and dependent on the power consumption of the deployment as a whole. Unit: [dB] Values: [-20; 0]; -100
SR	Sampling rate. Unit: [Hz]
NS	Number of samples.
VR	Velocity range along beam. Unit: [m/s]
VR5	Velocity range along beam 5. Unit: [m/s]
NPING	Number of pings.
СН	Beam selection. E.g. CH=123 will enable beams 1, 2 and 3.
ALTI	Enable(1)/disable(0) altimeter measurements.
вт	Enable(1)/disable(0) bottom tracking.
DISV	Disable(1)/enable(0) velocity measurements.
ECHO	Enable(1)/disable(0) echosounder.
RAWALTI	Raw altimeter recording interval.

ALTISTART	Altimeter start. Unit: [m]
ALTIEND	Altimeter start. Unit: [m]
HR	Enable(1)/disable(0) high resolution mode.
HR5	Enable(1)/disable(0) high resolution mode for beam 5.

Note: The actual valid range for the various parameters for your specific instrument and firmware can be found by using the GETBURSTLIM command. This command has the same arguments as the SETBURST/GETBURST commands shown in the list above. The output format for limits is described in Data Limit Formats.

SETBURST

Set burst settings

Example:
SETBURST, CS=1

GETBURST

Get burst settings

GETBURSTLIM

Get burst setting limits

5.8 High resolution burst settings

Commands: SETBURSTHR, GETBURSTHR, GETBURSTHRLIM, Command type: CONFIGURATION Mode: COMMAND

License: High Resolution

Burst high resolution profile settings and relevant limits.

Argument	Description
PROC	Input to processing the HR profile. 0: Pulse Coherent Processing using a single ambiguity. 1: Pulse Coherent Processing with Extended Velocity Range (EVR).
LAG	Distance between two transmit pulses on the slanted beams. Unit: [m]
LAG5	Distance between two transmit pulses on vertical beam.

	Unit: [m]
SCORR	Number of ambiguities (side correlators) to resolve when using Extended Velocity Range (EVR).
NC	Number of cells.
CS	Cell size. Unit: [m]
BD	Blanking distance. Unit: [m]
PL	Power level (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). This parameter is instrument dependent and dependent on the power consumption of the deployment as a whole. Unit: [dB] Values: [-20; 0]; -100

SETBURSTHR

Set high resolution profile burst settings

Example:

SETBURSTHR, BD=3

GETBURSTHR

Get high resolution profile burst settings

GETBURSTHRLIM

Get high resolution profile burst setting limits

5.9 Echosounder settings

Commands: SETECHO, GETECHO, GETECHOLIM, Command type: CONFIGURATION Mode: COMMAND

Echosounder settings and relevant limits

Argument	Description
NC	Number of cells
BINSIZE	Bin size Unit: [m]

BD	Blanking distance Unit: [m]
DF	Data format 3: DF3 Binary v3
FREQ1	Enable and set frequency 1 of echogram. Unit: [kHz]
NBINF1	Used only on the Signature100 which supports up to 5 packages pr frequency index. Processing is then done on the different frequency bands. For other instruments it must be set to 1. 1
XMIT1	Transmission length on frequency 1. Unit: [msec]
PL1	Power level on frequency 1 (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). This parameter is instrument dependent and dependent on the power consumption of the deployment as a whole. Unit: [dB] Values: [-20; 0]; -100
PULSECOMP1	Enable/disable pulse compression on frequency 1.
CH1	Frequency 1 channel beam selection. E.g. CH=123 will enable beams 1, 2 and 3.
RAW1	Frequency 1 raw echo data recording interval.
FREQ2	Enable and set frequency 2 of echogram. Unit: [kHz]
NBINF2	Used only on the Signature100 which supports up to 5 packages pr frequency index. Processing is then done on the different frequency bands. For other instruments it must be set to 1.
XMIT2	Transmission length on frequency 2. Unit: [msec]
PL2	Power level on frequency 2 (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). This parameter is instrument dependent and dependent on the power consumption of the deployment as a whole. Unit: [dB] Values: [-20; 0]; -100
PULSECOMP2	Enable/disable pulse compression on frequency 2.
CH2	Frequency 2 channel beam selection. E.g. CH=123 will enable beams 1, 2 and 3.
RAW2	Frequency 2 raw echo data recording interval.
FREQ3	Enable and set frequency 3 of echogram. Unit: [kHz]
NBINF3	Used only on the Signature100 which supports up to 5 packages pr frequency index. Processing is then done on the different frequency bands. For other instruments it must be set to 1.
ХМІТЗ	Transmission length on frequency 3.

	Unit: [msec]
PL3	Power level on frequency 3 (range -20.0 dB to 0.0 dB, -100 dB to switch off transmit). This parameter is instrument dependent and dependent on the power consumption of the deployment as a whole. Unit: [dB] Values: [-20; 0]; -100
PULSECOMP3	Enable/disable pulse compression on frequency 3.
СНЗ	Frequency 3 channel beam selection. E.g. CH=123 will enable beams 1, 2 and 3.
RAW3	Frequency 3 raw echo data recording interval.

Note: Note that Pulse Compression may only be enabled for one echogram.

SETECHO

Set echosounder settings

Example: SETECHO, NC=30, BINSIZE=1

GETECHO

Get echosounder settings

GETECHOLIM

Get echosounder setting limits

5.10 Read raw echosounder parameters

Command: READECHO Command type: INFO Mode: COMMAND

License: EchoSounder

This command provides information of the raw echosounder data records. It is typically used in software by parsing the header of the ad2cp-files, enabling the software to know the amount of data that is used for the raw echo records in the file.

The parameters all count to three because we may send out 3 pings. This corresponds to FREQ1, FREQ2 and FREQ3 and their corresponding parameters in SETECHO.

Argument	Description
NRAWSAMP1	Number of samples of raw data in first ping.

The number of samples for the stored, synthetic, transmit pulse which is
stored when pulse compression is enabled. When pulse compression is disabled it returns zero since the synthetic transmit pulse is not output in those cases.
Sampling frequency of the raw data.
The "distance" of the first sample with reference to the end of the transmit pulse which is the zero reference.
Number of samples of raw data in second ping.
The number of samples for the stored, synthetic, transmit pulse which is stored when pulse compression is enabled. When pulse compression is disabled it returns zero since the synthetic transmit pulse is not output in those cases.
Sampling frequency of the raw data.
The "distance" of the first sample with reference to the end of the transmit pulse which is the zero reference.
Number of samples of raw data in third ping.
The number of samples for the stored, synthetic, transmit pulse which is stored when pulse compression is enabled. When pulse compression is disabled it returns zero since the synthetic transmit pulse is not output in those cases.
Sampling frequency of the raw data.
The "distance" of the first sample with reference to the end of the transmit pulse which is the zero reference.

Example:

READECHO 1974,0,0,0,0,0,4464.3,0.0,0.0,0.750,0.000,0.000 OK

5.11 Alternating plan configuration

Commands: SETALTERNATE, GETALTERNATE, GETALTERNATELIM, Command type: CONFIGURATION Mode: COMMAND

The SETALTERNATE/GETALTERNATE command allows two different configurations to be run consecutively in time. The primary configuration (defined by SETPLAN, SETBURST, SETAVG, SETTMAVG, SETBT) is run for "PLAN" seconds, after which the unit powers down for a given period of time ("IDLE" seconds). The alternate configuration (defined by SETPLAN1, SETBURST1, SETAVG1, SETTMAVG1, SETBT1) is then run for "PLAN1" seconds and the unit powers down for "IDLE1" seconds. The configuration is then switched back to the primary and the process is repeated.

|--|

EN	Enable or disable the alternate configuration mode
PLAN	Primary configuration run time Unit: [s]
IDLE	Primary configuration idle time Unit: [s]
PLAN1	Alternate configuration run time Unit: [s]
IDLE1	Alternate configuration idle time Unit: [s]

Note: The actual valid range for the various parameters for the firmware version is used can be found by using the GETALTERNATELIM command. This command has the same arguments as the SETALTERNATE/GETALTERNATE commands shown in the list above. The output format for limits is described in Data Limit Formats.

SETALTERNATE

Set instrument alternating plan configuration

Example:

SETALTERNATE, EN=1, PLAN=60, IDLE=60, PLAN1=60, IDLE1=60

GETALTERNATE

Get instrument alternating plan configuration

GETALTERNATELIM

Get instrument alternating plan limits

5.12 Get memory usage

Command: GETMEM Command type: INFO Mode: COMMAND

Returns the amount of memory that will be stored on the recorder per hour for the burst and average data as well as the combined plan value. Alternate mode values is also supported.

Argument	Description
	Combined burst and average memory usage for primary plan Unit: [MB/h]
BURST	Burst memory usage for primary plan

	Unit: [MB/h]
AVG	Average data memory usage for primary plan Unit: [MB/h]
PLAN1	Combined burst and average memory usage for secondary plan Unit: [MB/h]
BURST1	Burst memory usage for secondary plan Unit: [MB/h]
AVG1	Average data memory usage for secondary plan Unit: [MB/h]
TOTAL	Total memory usage Unit: [MB/h]

Example:

GETMEM, TOTAL

5.13 Trigger settings

Commands: SETTRIG, GETTRIG, GETTRIGLIM, Command type: CONFIGURATION Mode: COMMAND

The parameters and limits for Trigger. The available trigger types will depend on the harness/cable used with the instrument.

Argument	Description
EN	Enable/disable external trigger functionality.
TRIG	Specifies trigger type. The available trigger types will depend on the harness/cable used with the instrument. "TTLEDGES": Trigger on both rising- and falling edge of a TTL signal. "TTLRISE": Trigger on rising edge of a TTL signal. "TTLFALL": Trigger on falling edge of a TTL signal. "RS485EDGES": Trigger on both edges of a RS-485 signal. "RS485FALL": Trigger on rising edge of a RS-485 signal. "RS485FALL": Trigger on falling edge of a RS-485 signal. "RS485FALL": Trigger on falling edge of a RS-485 signal. "RS485FALL": Trigger on Command. When the TRIG parameter of the SETTRIG command is set to "COMMAND" the AD2CP is trigged by sending a "TRIG[CrLf]" command. The trigger time will be when the end of the [CrLf] is received
TRIGOUTPUT	TRIGOUTPUT=1 enables master trigger output. This enables several instruments to be synchronized together with one instrument acting as master. For an instrument to be used as a master when triggering, the trigger type needs to be set to RS485EDGES. Only continuous measurement configurations are supported in this mode, and all synchronized instruments

must be onf the same frequency and have the same deployment
configuration.

SETTRIG

Set trigger settings

Example:

SETTRIG, EN=1, TRIG="RS485EDGES", TRIGOUTPUT=0
SETTRIG, EN=0, TRIG="INTSR", TRIGOUTPUT=1

GETTRIG

Get trigger settings

GETTRIGLIM

Get trigger setting limits

5.14 Trigger measurement

Command: TRIG Command type: ACTION Mode: MEASUREMENT

Command used for trigging measurement when Trigger is enabled and trigger type equals "COMMAND".

Argument	Description
ID	Counting number (optional).

Example: TRIG, ID=123

5.15 External sensor settings

Commands: SETEXTSENSOR, GETEXTSENSOR, GETEXTSENSORLIM, Command type: CONFIGURATION Mode: COMMAND

External sensor configuration.

Argument	Description
EN	Enable external sensor.

Commands	49

SETEXTSENSOR

Set external sensor settings

Example: SETEXTSENSOR, EN=0 OK

GETEXTSENSOR

Get external sensor settings

Example: GETEXTSENSOR, EN 0 OK

GETEXTSENSORLIM

Get external sensor setting limits

5.16 Get power use

Command: GETPWR Command type: INFO Mode: COMMAND

Returns the power consumption in milliWatts for the various measurements enabled as well as the overall value. The plan values include the sleep mode power consumption in addition to the sum of average and burst mode values. The reported values are adjusted according to the input voltage to the system when the command is executed.

Argument	Description
PLAN	Combined power use on both burst and average sampling for secondary plan Unit: [mW]
BURST	Power use on burst data sampling for secondary plan Unit: [mW]
AVG	Power use on average data sampling for secondary plan Unit: [mW]
TOTAL	Total power use Unit: [mW]

Example:

GETPWR, TOTAL

5.17 Get measured precision

Commands: GETPRECISION, GETPRECISION1, Command type: INFO Mode: COMMAND

Returns the precision in the horizontal plane and along the beam in cm/s for the various measurement modes.

Argument	Description
AVGHORZ	Precision in the horizontal plane in average mode Unit: [cm/s]
BURSTHORZ	Precision in the horizontal plane in burst mode Unit: [cm/s]
BEAM5	Precision in the vertical plane (beam 5) in burst mode Unit: [cm/s]
AVGBEAM	Precision along beam in average mode Unit: [cm/s]
BURSTBEAM	Precision along beam in burst mode Unit: [cm/s]

GETPRECISION

Returns the precision for primary plan

Example:

GETPRECISION, AVGHORZ

GETPRECISION1

Returns the precision for secondary plan

Example: GETPRECISION1, AVGHORZ

5.18 Instrument user settings

Commands: SETUSER, GETUSER, GETUSERLIM, Command type: CONFIGURATION Mode: COMMAND The SAVE, USER command must be sent to save changes in USER parameters.

Argument	Description
POFF	Set the offset value of the pressure sensor. Unit: [dbar] Values: [0; 11]
DECL	Magnetic declination. Unit: [deg]
нх	Hard iron x-component. Unit: [Gauss]
НҮ	Hard iron y-component. Unit: [Gauss]
HZ	Hard iron z-component. Unit: [Gauss]

SETUSER

Set instrument user settings

```
Example:
```

```
SETUSER, POFF=4.5, DECL=1.4, HX=100, HY=100, HZ=100
OK
SAVEUSER
OK
```

GETUSER

Get instrument user settings

GETUSERLIM

Get instrument calibration parameter limits

5.19 Get instrument ID

Command: ID Command type: INFO Mode: COMMAND

Commands for accessing instrument name and serial number

Argument	Description
STR	Instrument name Values: '_'; '.' Max Length: 64

SN	Serial number
	Values: [0; 2147483647]

Example:

ID "Signature1000",900002 ID,STR "Signature1000"

5.20 Reload default settings

Command: SETDEFAULT Command type: ACTION Mode: COMMAND

Reload default settings.

Argument	Description
CONFIG	Restore all settings below except USER and INST to default values. Legacy argument ALL acts as CONFIG.
AVG	Restore average mode settings to default.
INST	Restore instrument main settings to default.
TMAVG	Restore telemetry average settings to default.
PLAN	Restore plan settings to default.
BURST	Restore burst settings to default.
РТР	Restore precision time protocol to default.
ВТ	Restore bottom track settings to default.
USER	Restore user calibration to default.
TMBURST	Restore telemetry burst to default.
TMALTI	Restore altimeter telemetry settings to default.
DVL	Restore DVL settings to default.

Example:

SETDEFAULT, CONFIG

5.21 Save settings

Command: SAVE Command type: ACTION Mode: COMMAND Save current settings for next measurement. At least one argument must be specified for the SAVE command.

Argument	Description
CONFIG	Save all settings except INST and USER settings. Legacy argument ALL acts as CONFIG.
AVG	Save AVG settings.
INST	Save INST settings.
TMAVG	Save telemetry average settings.
PLAN	Save plan settings.
BURST	Save burst settings.
РТР	Save precision time protocol settings.
тмвт	Save telemetry bottom track settings.
USER	Save user instrument settings.
TMBURST	Save telemetry burst settings.
TMALTI	Save altimeter telemetry settings.
DVL	Save DVL settings.

Example: SAVE, CONFIG

5.22 Deploy instrument

Command: DEPLOY Command type: ACTION Mode: COMMAND

Deploy the instrument. Start the measurement at the time specified in the string argument. The format must be exactly as shown. If no time value is passed, the deployment will start immediately.

The number of seconds to the specified deployment time is returned.

The DEPLOY command will save the configuration as well as deploying the instrument, as if a SAVE, CONFIG command were sent.

Argument	Description
TIME	уууу-MM-dd HH:mm:ss

Note: The difference between DEPLOY and START is that the latter will immediately start a measurement any time the instrument state returns to Measurement mode such as by applying power or timeout from Data Retrieval Mode. If DEPLOY is used, be aware that if the deployment time has passed when the battery is connected, the instrument will resynchronize its data sampling according to

the deployment time and the instrument configuration. This means you may have to wait for one average measurement interval or one burst measurement interval before the instrument starts to ping.

Example:

```
DEPLOY,TIME="2020-12-18 15:30:00"
592
OK
```

5.23 Start instrument

Command: START Command type: ACTION Mode: COMMAND

Start the instrument (go in measurement mode). Specify the order of the alternating plans by using the PLAN argument.

Note that the START command will save the configuration as well as starting the measurement, as if a SAVE,CONFIG command were sent.

Argument	Description
PLAN	Select plan to start
	0: Plan
	1: Plan1

Example:

START, PLAN=0

5.24 Enter command mode

Command: MC Command type: ACTION Mode: CONFIRMATION

Sets instrument in command mode from confirmation mode.

```
Example:
MC
```

5.25 Data retrieval mode

Command: RM Command type: ACTION Mode: CONFIRMATION

Go into data retrieval mode from confirmation mode and access the instruments recorder.

Example: RM

5.26 Enter measurement mode

Command: CO Command type: ACTION Mode: CONFIRMATION, RETRIEVAL

Continue in measurement mode from confirmation mode or data retrieval mode. Instrument returns to collecting data according to the current configuration.

Example:

CO

5.27 Write to file

Command: FWRITE Command type: ACTION Mode: COMMAND, CONFIRMATION, RETRIEVAL

Write tag or string to file

Argument	Description
FNUM	File identifier for telling which file the info is written to. Default is 0. 0: File defined in the PLAN command 1: Telemetry file Default: 0
ID	Identifier. Tell the parser how to interpret the string. Default value: 0 0: Comment 1: Dive location 2: Surface location Default: 0
STR	String. Max Length: 200

Note: Fwrite STR and B64STR cannot be set together.

Example:

FWRITE, FNUM=1, STR="ABCDEF"

5.28 Power down

Command: POWERDOWN Command type: ACTION Mode: COMMAND Power down the instrument to set it in sleep mode.

Example:

POWERDOWN

5.29 Erase files on recorder

Command: ERASE Command type: ACTION Mode: COMMAND

Erase all files on the recorder

Argument	Description
CODE	Code should be 9999 9999

Example: ERASE, CODE=9999

5.30 Format recorder

Command: FORMAT Command type: ACTION Mode: COMMAND

Format the recorder. Note that this can take minutes depending on the recorder size.

Argument	Description
CODE	Code should be 9999 9999

Example: FORMAT, CODE=9999

5.31 SEC reboot

Command: SECREBOOT Command type: ACTION Mode: COMMAND

Reboots the SEC (Interface processor). This command makes it possible to reboot the SEC without going via the web interface.

Argument	Description
----------	-------------

Example: SECREBOOT, 9999

5.32 List files

Command: LISTFILES Command type: INFO Mode: COMMAND, RETRIEVAL

Lists the files stored on the instrument recorder.

Argument	Description
	Amount of file information to list. "normal": Normal file info. "la": Lists extended information.

Example:

LISTFILES, OPT="NORMAL"

5.33 Download

Command: DOWNLOAD Command type: ACTION Mode: COMMAND, RETRIEVAL

This command reads a file from the recorder to the terminal window.

Argument	Description
FN	Filename Values: ['a'; 'z']; ['A'; 'Z']; ['0'; '9']; '_'; '.' Max Length: 30
SA	Start address (offset) of the first byte to be returned
LEN	Number of bytes to be downloaded
CRC	Use Cyclic redundancy check
СКЅ	Use Checksum

Note: If no parameters other than the file name are sent with the DOWNLOAD command, the complete file is directly returned, without the number of bytes to follow. The end of the file can then be detected by parsing the OK<CR><LF>.

The parameters can be used to download the file in several pieces. The number of bytes to follow will then be returned in ASCII format and terminated with <CR><LF> before the data is output. The end of the file stream is terminated with OK<CR><LF>. A cyclic redundancy check or a checksum will then be

added to verify data integrity during download. The complete file can also be downloaded in this way by specifying SA=0 and a large value for LEN. The actual file size is then returned before the data follows.

Example:

```
DOWNLOAD,FN="TestFile.ad2cp",SA=0,LEN=4096,CRC=1,CKS=0
4096
<binary or ASCII data>
23432
OK
```

5.34 Inquire state

Command: INQ Command type: INFO Mode: COMMAND, CONFIRMATION, RETRIEVAL, MEASUREMENT

The INQ command queries the instrument state. Note that when operating over RS232 or RS422 serial lines, it should be preceded with @@@@@@ <delay 400ms> and a flush of the input buffer in case the instrument is in power down or in a low power mode taking measurements.

Consult section "Modes" for a description of the Instrument modes.

Note: Parameters used to represent instrument mode:

0000: Bootloader/Firmware upgrade

0001: Measurement

0002: Command

0004: Data Retrieval

0005: Confirmation

0006: FTP-mode

Example:

(In command mode) INQ 0002 (In measurement mode) INQ 0001 (In confirmation mode) INQ 0005 (In data retrieval mode) INQ 0004 (In firmware upgrade mode) INQ 0000

5.35 Get instrument state

Command: GETSTATE Command type: INFO Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Returns information about the current operational state of the instrument

Argument	Description
MODE	Current instrument state. 1: Measurement (START command received). 2: In command mode. 3: DEPLOY command received and deployment running. 4: Data retrieval. 5: Confirmation. 6: Network FTP. 8: DEPLOY command received, but deployment has not, yet started. 9: Confirmation in measurement mode. 10: Confirmation in deploy mode. 11: Confirmation in pre-deploy mode. 12: internal processing in progress.
DEPTIME	 Seconds since deployment: 0 – DEPLOY command has not been received. < 0 – Number of seconds until deployment starts. > 0 – Number of seconds that deployment has been running. Unit: [s]
MEASTIME	Seconds with measurements: 0 – START command has not been received. > 0 – Number of seconds that measurement has been running. Unit: [s]
CURRTIME	The current instrument time. Time format is "YYYY-MM-DD HH:MM:SS" Unit: [Time]
WAKEUP	Reason for instrument wakeup. 0: Last startup/reboot caused by loss/low voltage. 1: Last startup/reboot caused by power on. 2: Last startup/reboot caused by BREAK command. 3: Last startup/reboot caused by Wakeup by Real time clock. 4: Last startup/reboot caused by WatchDog
INTPROC	Internal processing Active

Example:

GETSTATE, WAKEUP, CURRTIME

5.36 Get error

Command: GETERROR Command type: INFO Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

GETERROR retrieves a full description of the last error condition to occur. The error number is returned first followed by a string with the text description of the last error condition. A second string is also returned which contains information on the valid range of the failing argument.

Argument	Description
NUM	Integer error value
STR	Text description
LIM	Valid limits as text

Example:

```
SETAVG,CS=2.5
OK
SAVE,CONFIG
ERROR
GETERROR
40,"Invalid setting: Avg Cell Size","GETAVGLIM,CS=([0.20;2.00])"
OK
```

5.37 Get all

Command: GETALL Command type: INFO Mode: COMMAND

GETALL retrieves all relevant configuration information for the instrument. This information can either be displayed on the command line or saved to a data file on the instrument. For the Nortek postprocessing software to read a valid Nortek file it must contain both the Header and Data Record. The Header information can be obtained by using the command GETALL.

Argument	Description
FN	Write the output to this file saved on instrument

Example:

```
GETALL
GETPLAN, 600, 1, 0, 0, 10, 0.0, 1, 0, 0, 1500, "", 1
GETAVG, 20, 1.00, 0.30, "BEAM", -12.0, 1, 0.000, 1.29, 3, 1, 0, 0
GETBURST, 50, 4, 0.400, 0.200, "BEAM", 0.0, 1, 1024, 4.00, 0.000, 0, 1, 0
GETUSER, 0.00, 0.00, 0, 0, 0
GETINST, 9600, 232, 1
```

```
BEAMCFGLIST,1,10.00,20.00,1000,500,1,1
BEAMCFGLIST,2,10.00,20.00,1000,500,1,2
BEAMCFGLIST,3,10.00,20.00,1000,500,1,3
BEAMCFGLIST,4,10.00,20.00,1000,500,1,4
OK
```

5.38 Get recorder state

Command: RECSTAT Command type: INFO Mode: COMMAND, RETRIEVAL

Returns recorder state.

Argument	Description
SS	Number of bytes in a sector. Unit: [bytes]
CS	Number of bytes in one cluster. Unit: [bytes]
FC	Number of bytes in free clusters. Unit: [bytes]
ТС	Total number of bytes in clusters. Unit: [bytes]
VS	Volume Size in bytes. Unit: [bytes]
FF	Number of free files.
TF	Total number of files.

Example:

RECSTAT, VS

5.39 Get configuration limits

Command: GETMISCLIM Command type: INFO Mode: COMMAND

Returns configuration limits.

Argument	Description
AVGPR	Returns the total profiling range for averaged measurements (SETAVG) Unit: [m]
BURSTPR	Returns the total profiling range for burst profile measurements (SETBURST) Unit: [m]

BURSTHRPR	Returns the total profiling range for burst HR profile measurements
	(SETBURSTHR)
	Unit: [m]

Note: The output format for limits is described in Data Limit Formats

Example:

GETMISCLIM, BURSTPR

5.40 Get transfer matrices

Commands: GETXFAVG, GETXFBURST, Command type: INFO Mode: COMMAND

Returns the "Beam to XYZ" transfer matrix for the current setup. If the number of beams is 1 or 2, only ROWS and COLS are returned.

Argument	Description
ROWS	Number of rows
COLS	Number of rows
M11	
M12	
M13	
M14	
M21	
M22	
M23	
M24	
M31	
M32	
M33	
M34	
M41	
M42	
M43	
M44	

Note: Return is ROWS, COLS, M11, M12 ... M43, M44.

Cell indexes are: first number for row and second index for column.

GETXFAVG

Returns the "Beam to XYZ" transfer matrix for average measurements

Example:

GETXFAVG

GETXFBURST

Returns the "Beam to XYZ" transfer matrix for burst measurements

Example:

```
GETXFBURST
GETXFBURST, ROWS=4, COLS=4, M11=1.183, M12=0.000, M13=-
1.183, M14=0.000, M21=0.000, M22=1.183, M23=0.000, M24=-
1.183, M31=0.552, M32=0.000, M33=0.552, M34=0.000, M41=0.000, M42=0.552, M
43=0.000, M44=0.552
GETXFAVG, ROWS=3, COLS=3, M11=1.183, M12=0.000, M13=-
1.183, M21=1.183, M22=-2.366, M23=1.183, M31=0.552, M32=0.000, M33=0.552
```

5.41 Average mode telemetry settings

Commands: SETTMAVG, GETTMAVG, GETTMAVGLIM, Command type: CONFIGURATION Mode: COMMAND

The instrument averaging mode telemetry settings and relevant limits.

Argument	Description
EN	Enable averaging mode telemetry.
CD	Cells divisor. Define the interval at which cells should be outputted from your profile. If CD=1 every cell will be included, if CD=2 every second cell will be outputted etc.
PD	Profile divisor. Define how often the collected profile should be outputted. If PD=1 the profile from each ping will be outputted, if PD=2 every second profile will be outputted etc. Note that PD>1 is not available when averaging is enabled.
AVG	Number of seconds included in the telemetry average. If 0, no averaging is done and every ping will be outputted Unit: [s]
TV	Enable(1)/disable(0) velocity output.
ТА	Enable(1)/disable(0) amplitude output

тс	Enable(1)/disable(0) correlation output.
СҮ	Coordinate system. BEAM, XYZ, ENU
FO	Enable(1)/disable(0) file output. The telemetry data will be written to the file named telemetryfile.bin on the recorder
SO	Enable(1)/disable(0) serial output. The telemetry data will be outputted live, either over serial or ethernet connection
DF	Telemetry data format. For examples, see Telemetry Data Format chapter.
DISTILT	Disable tilt.
TPG	Enable(1)/disable(0) output of the Percentage Good value.
MAPBINS	Enable vertical bin mapping.

Note: It is recommended to enable TPG when averaging (AVG>0) is also enabled.

The actual valid range for the various parameters for your specific instrument and firmware can be found by using the GETTMAVGLIM command. This command has the same arguments as the SETTMAVG/GETTMAVG commands shown in the list above. The output format for limits is described in Data Limit Formats.

SETTMAVG

Set averaging mode telemetry settings

Example: SETTMAVG, EN=1, AVG=30

GETTMAVG

Get averaging mode telemetry settings

GETTMAVGLIM

Get instrument averaging mode limits

5.42 Burst mode telemetry settings

Commands: SETTMBURST, GETTMBURST, GETTMBURSTLIM, Command type: CONFIGURATION Mode: COMMAND

The instrument burst mode telemetry settings and relevant limits.

Description

EN	Enable(1)/disable(0) burst telemetry
NS	Number of burst samples in telemetry to output
СҮ	Coordinate System BEAM, XYZ, ENU
FO	Enable(1)/disable(0) file output. The telemetry data will be written to the file named telemetryfile.bin on the recorder
SO	Enable(1)/disable(0) serial output. The telemetry data will be outputted live, either over serial or ethernet connection
DF	Telemetry data format. For examples, see Telemetry Data Format chapter.
ENAVG	Enable(1)/disable(0) averaging over the number of samples (NS) value
MAPBINS	Enable(1)/disable(0) vertical bin mapping

Note: The actual valid range for the various parameters for your specific instrument and firmware can be found by using the GETTMBURSTLIM command. This command has the same arguments as the SETTMBURST/GETTMBURST commands shown in the list above. The output format for limits is described in Data Limit Formats.

SETTMBURST

Set burst mode telemetry settings

Example: SETTMBURST,EN=1,NS=0

GETTMBURST

Get burst mode telemetry settings

GETTMBURSTLIM

Get instrument burst mode limits

5.43 Altimeter telemetry settings

Commands: SETTMALTI, GETTMALTI, GETTMALTILIM, Command type: CONFIGURATION Mode: COMMAND

The instrument altimeter telemetry settings and relevant limits.

Argument	Description
EN	Enable(1)/disable(0) altimeter telemetry.

TS	Include time stamp.
TQ	Include quality parameter.
FO	Enable(1)/disable(0) file output. The telemetry data will be written to the file named telemetryfile.bin on the recorder
SO	Enable(1)/disable(0) serial output. The telemetry data will be outputted live, either over serial or ethernet connection
DF	Altimeter telemetry format. For examples, see Telemetry Data Format chapter. 200: NMEA (PNORA) format without tags. 201: NMEA (PNORA) format with tags.
TPR	Enable(1)/disable(0) output of pitch and roll (in DF200/201 data format).

SETTMALTI

Set altimeter telemetry settings

Example: SETTMALTI, EN=1, TS=1, TQ=1

GETTMALTI

Get altimeter telemetry settings

GETTMALTILIM

Get instrument altimeter limits

5.44 Get telemetry file size

Command: TMSTAT Command type: ACTION Mode: COMMAND, RETRIEVAL

This command returns the length (# of bytes) of the telemetry file.

Example: TMSTAT 13500 OK

5.45 Download telemetry

Command: DOWNLOADTM Command type: ACTION Mode: COMMAND, RETRIEVAL

This command enables reading the telemetry file which can be created during measurement by using the appropriate SETTMxxx commands. The formats are described in the section detailing Data Formats.

Argument	Description
SA	Start address (offset) of the first byte to be returned.
LEN	Number of bytes to be downloaded.
CRC	Use Cyclic redundancy check (CRC-16). CRC=1 enables CRC. CRC cannot be enabled when CKS=1.
СКЅ	Use Checksum. CKS=1 enables checksum. CKS cannot be enabled when CRC=1.

Note: If no parameters are sent with the DOWNLOADTM command the complete file is directly returned, without the number of bytes to follow. The end of the file can then be detected by parsing the OK<CR><LF>.

The parameters can be used to download the telemetry file in several pieces. The number of bytes to follow will then be returned in ASCII format and terminated with <CR><LF> before the data is output. The end of telemetry stream is terminated with OK<CR><LF>. A cyclic redundancy check or a checksum will then be added to be able to verify data integrity during download. The complete file can also be downloaded in this way by specifying SA=0 and a large value for LEN. The actual file size is then returned before the data follows. See also TMSTAT for retrieving file information.

Example:

```
DOWNLOADTM, SA=0, LEN=4096, CRC=1, CKS=0
4096 (number of bytes that follow)
<binary or ASCII data>
23432 (checksum/crc value)
OK
```

5.46 Save configuration to file

Command: STOREHEADERTM Command type: ACTION Mode: COMMAND

This command stores the GETALL (complete configuration) to the telemetry file.

Example:

STOREHEADERTM

5.47 Erase telemetry file

Command: ERASETM Command type: ACTION Mode: COMMAND, RETRIEVAL

Erase the telemetry file.

Note: The telemetry file can also be erased over FTP.

Example: ERASETM, CODE=9999

5.48 Write tag output

Command: TAG Command type: ACTION Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Write a Tag to output file and data output.

The TAG command adds a tag to the both the output file and the output data, if enabled. The output is a String Record as defined in the FWRITE command. The ID of the String Record Data packet is 19dec.

Argument	Description
STR	Tag string. Maximum 200 bytes.
CLK	Add clock in tag.

Note: Remember to use the BBPWAKEUP command when sending commands to an instrument in Measurement mode, when using Ethernet.

Example:

TAG, STR="This is a test tag.",CLK=1
a5 0a a0 10 2f 00 42 8c 42 5d 13 32 // Binary header
30 31 37 2d 30 31 2d 32 34 20 30 38 // String Record ID = 19dec
3a 34 32 3a 35 37 2e 34 34 39 20 2d // "2017-01-24 08:42"
20 54 68 69 73 20 69 73 20 61 20 74 // ":57.449 - This i"
65 73 74 20 74 61 67 2e 00 // "s is a test tag."
OK

5.49 Major beam angle calibration

Commands: SETUSERECHOMAJORANGLE, GETUSERECHOMAJORANGLE, GETUSERECHOMAJORANGLELIM, Command type: CONFIGURATION Mode: COMMAND

Commands that enable storing echosounder calibration values. The Signature echosounder does not use any of these values in its processing, but they provide users a way to store their calibration values together with the measure data. So these only serve as an option for storing calibration data in the instrument which are then output in the data file header.

These commands allow fifth order polynomials with individual enable. The scheme is to calculate the polynomial over the frequency range of the transducer, using the center frequency from the beam list as origin.

Argument	Description
EN	Enable storing calibration values
PO	Constant
P1	First order polynomial
P2	Second order polynomial
Р3	Third order polynomial
P4	Forth order polynomial
Р5	Fifth order polynomial

Note: Integration manual refers to this as a MajorAxis3dBBeamAngle command.

SETUSERECHOMAJORANGLE

Set calibration values for major beam angle

Example: SETUSERECHOMAJORANGLE, EN=1, P0=0.123, P1=1.23, P2=12.3

GETUSERECHOMAJORANGLE

Get calibration values for major beam angle

GETUSERECHOMAJORANGLELIM

Get limits for calibration values for major beam angle

5.50 Major beam angle offset calibration

Commands: SETUSERECHOMAJOROFFSET, GETUSERECHOMAJOROFFSET, GETUSERECHOMAJOROFFSETLIM, Command type: CONFIGURATION Mode: COMMAND

Commands that enable storing echosounder calibration values. The Signature echosounder does not use any of these values in its processing, but they provide users a way to store their calibration values together with the measure data. So these only serve as an option for storing calibration data in the instrument which are then output in the data file header.

These commands allow fifth order polynomials with individual enable. The scheme is to calculate the polynomial over the frequency range of the transducer, using the center frequency from the beam list as origin.

Argument	Description
EN	Enable storing calibration values
PO	Constant
P1	First order polynomial
P2	Second order polynomial
Р3	Third order polynomial
P4	Forth order polynomial
Р5	Fifth order polynomial

Note: Integration manual refers to this as a MajorAxis3dBBeamAngleOffset command.

SETUSERECHOMAJOROFFSET

Set calibration values for major beam angle offset

SETUSERECHOMAJOROFFSET, EN=1, P0=0.123, P1=1.23, P2=12.3

GETUSERECHOMAJOROFFSET

Get calibration values for major beam angle offset

GETUSERECHOMAJOROFFSETLIM

Get limits for calibration values for major beam angle offset

5.51 Minor beam angle calibration

Commands: SETUSERECHOMINORANGLE, GETUSERECHOMINORANGLE, GETUSERECHOMINORANGLELIM, Command type: CONFIGURATION Mode: COMMAND

Commands that enable storing echosounder calibration values. The Signature echosounder does not use any of these values in its processing, but they provide users a way to store their calibration values together with the measure data. So these only serve as an option for storing calibration data in the instrument which are then output in the data file header.

These commands allow fifth order polynomials with individual enable. The scheme is to calculate the polynomial over the frequency range of the transducer, using the center frequency from the beam list as origin.

Argument	Description
EN	Enable storing calibration values
РО	Constant
P1	First order polynomial
P2	Second order polynomial
Р3	Third order polynomial
Р4	Forth order polynomial
Р5	Fifth order polynomial

Note: Integration manual refers to this as a MinorAxis3dBBeamAngle command.

SETUSERECHOMINORANGLE

Set calibration values for minor beam angle

Example: SETUSERECHOMINORANGLE, EN=1, P0=0.123, P1=1.23, P2=12.3

GETUSERECHOMINORANGLE

Get calibration values for minor beam angle

GETUSERECHOMINORANGLELIM

Get limits for calibration values for minor beam angle

5.52 Minor beam angle offset calibration

Commands: SETUSERECHOMINOROFFSET, GETUSERECHOMINOROFFSET, GETUSERECHOMINOROFFSETLIM, Command type: CONFIGURATION Mode: COMMAND

Commands that enable storing echosounder calibration values. The Signature echosounder does not use any of these values in its processing, but they provide users a way to store their calibration values together with the measure data. So these only serve as an option for storing calibration data in the instrument which are then output in the data file header.

These commands allow fifth order polynomials with individual enable. The scheme is to calculate the polynomial over the frequency range of the transducer, using the center frequency from the beam list as origin.

Argument	Description
EN	Enable storing calibration values
PO	Constant
P1	First order polynomial
P2	Second order polynomial
Р3	Third order polynomial
P4	Forth order polynomial
Р5	Fifth order polynomial

Note: Integration manual refers to this as a MinorAxis3dBBeamAngleOffset command.

SETUSERECHOMINOROFFSET

Set calibration values for minor beam angle offset

Example:

SETUSERECHOMINOROFFSET, EN=1, P0=0.123, P1=1.23, P2=12.3

GETUSERECHOMINOROFFSET

Get calibration values for minor beam angle offset

GETUSERECHOMINOROFFSETLIM

Get limits for calibration values for minor beam angle offset

5.53 Echosounder gain calibration

Commands: SETUSERECHOGAIN, GETUSERECHOGAIN, GETUSERECHOGAINLIM, Command type: CONFIGURATION Mode: COMMAND

Commands that enable storing echosounder calibration values. The Signature echosounder does not use any of these values in its processing, but they provide users a way to store their calibration values together with the measure data. So these only serve as an option for storing calibration data in the instrument which are then output in the data file header.

These commands allow fifth order polynomials with individual enable. The scheme is to calculate the polynomial over the frequency range of the transducer, using the center frequency from the beam list as origin.

Argument	Description		
EN	Enable storing calibration values		
PO	Constant		
P1	First order polynomial		
P2	Second order polynomial		
Р3	Third order polynomial		
Р4	Forth order polynomial		
Р5	Fifth order polynomial		
FREQA	Calibration frequency A Unit: [Hz]		
GAINFA	Specify the gain for frequency A Unit: [dB]		
FREQB	Calibration frequency B Unit: [Hz]		
GAINFB	Specify the gain for frequency B Unit: [dB]		
FREQC	Calibration frequency C Unit: [Hz]		
GAINFC	Specify the gain for frequency C Unit: [dB]		

Note: Integration manual refers to this as a Gain command.

SETUSERECHOGAIN

Set calibration values for gain

Example:

SETUSERECHOGAIN, EN=1, P0=0.123, P1=1.23, P2=12.3

GETUSERECHOGAIN

Get calibration values for gain

GETUSERECHOGAINLIM

Get limits for calibration values for gain

5.54 Two way beam angle calibration

Commands: SETUSERECHOTWOWAYANGLE, GETUSERECHOTWOWAYANGLE, GETUSERECHOTWOWAYANGLELIM, Command type: CONFIGURATION Mode: COMMAND

Commands that enable storing echosounder calibration values. The Signature echosounder does not use any of these values in its processing, but they provide users a way to store their calibration values together with the measure data. So these only serve as an option for storing calibration data in the instrument which are then output in the data file header.

These commands allow fifth order polynomials with individual enable. The scheme is to calculate the polynomial over the frequency range of the transducer, using the center frequency from the beam list as origin.

Argument	Description	
EN	Enable storing calibration values	
P0	Constant	
P1	First order polynomial	
P2	Second order polynomial	
Р3	Third order polynomial	
P4	Forth order polynomial	
Р5	Fifth order polynomial	

Note: Integration manual refers to this as a TwoWayBeamAngle command.

SETUSERECHOTWOWAYANGLE

Set calibration values for two way beam angle

Example:

SETUSERECHOTWOWAYANGLE, EN=1, P0=0.123, P1=1.23, P2=12.3

GETUSERECHOTWOWAYANGLE

Get calibration values for two way beam angle

GETUSERECHOTWOWAYANGLELIM

Get limits for calibration values for two way beam angle

5.55 Precision time protocol

Commands: PTPSET, PTPGET, Command type: CONFIGURATION Mode: COMMAND

Configure the precision time protocol parameters.

Argument	Description
EN	Choose a time protocol.0: Time protocol disabled.1: Use precision time protocol (PTP).2: Use network time protocol (NTP).
OFFSET	Offset Unit: [µs]
CL	Time value representing the number of seconds elapsed since 00:00 hours, Jan 1, 1970 UTC Unit: [s]
IP	The numeric IP address of the NTP server to use for syncing

Note: For the case of NTP, the instrument is not capable of DNS name resolution. In order to retrieve the IP address associated with a name, use the "nslookup" tool from the computer command line

PTPSET

Set precision time protocol parameters

```
Example:

PTPSET, EN=0, OFFSET=0, CL=1609193402

OK

PTPSET, EN=2, IP="129.240.3.3"

OK
```

PTPGET

Get precision time protocol parameters

Example: PTPGET, EN, OFFSET, CL

5.56 Wake Doppler processor

Command: BBPWAKEUP Command type: ACTION Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Commands available in measurement mode should be preceded by the command BBPWAKEUP. This ensures that the BBP is ready to process the command when it is received (see Checking instrument state over Ethernet). In measurement mode, another BBPWAKEUP must be sent when more than 2 seconds has elapsed since the previous command.

If uncertain of the active mode it is good practice to send BBPWAKEUP before sending GETSTATE or INQ.

Example:

BBPWAKEUP

5.57 Wave processing settings

Commands: SETWAVEPROC, GETWAVEPROC, GETWAVEPROCLIM, Command type: CONFIGURATION Mode: COMMAND

License: WaveProcessing

Wave processing settings.

Argument	Description		
EN	Enable(1)/disable(0) internal wave processing.		
MOUNTHEIGHT	Distance the instrument head (the pressure sensor location) is over the sea floor; this is used to correctly calculate the transfer functions used for the pressure and velocity. Unit: [m]		
MODE	Processing method used in the calculation. "MLMST": "SUV":		
BANDSEPFREQ	Frequency to separate between sea and swell. Unit: [Hz]		

FREQSTART	Start frequency sets the start of the frequency range that processing is done over. Unit: [Hz]	
FREQSTEP	requency step. Jnit: [Hz]	
FREQEND	End frequency sets the end of the frequency range that processing is done over. Unit: [Hz]	

SETWAVEPROC

Set wave processing settings

Example:

```
SETWAVEPROC, EN=1, MOUNTHEIGHT=0.5, MODE="MLMST", BANDSEPFREQ=0.2, FREQST
ART=0.02, FREQSTEP=0.01, FREQEND=0.99
OK
```

GETWAVEPROC

Get wave processing settings

GETWAVEPROCLIM

Get wave processing setting limits

5.58 Wave telemetry settings

Commands: SETTMWAVE, GETTMWAVE, GETTMWAVELIM, Command type: CONFIGURATION Mode: COMMAND

License: WaveProcessing

Wave telemetry settings.

Argument	Description	
EN	Enable/disable processed wave data telemetry.	
DF	Telemetry data format. For examples, see Telemetry Data Format chapter. 500: Binary data format 501: Wave NMEA format 502: Legacy binary data format	
TWAP	Enable output of wave parameter estimates	

TEDS	Enable output of Energy Density Spectrum	
TWBS	Enable output of Wave band estimates	
TFS	nable output of Fourier coefficient spectrum	
SO	Enable Serial Output	
FO	Enable File Output	
TWDR	Enable Transmit Wave Direction	

SETTMWAVE

Set wave telemetry settings

Example:

```
SETTMWAVE, EN=1, DF=501, TWAP=1, TEDS=0, TWBS=0, TFS=0, SO=1, FO=0, TWDR=0
OK
```

GETTMWAVE

Get wave telemetry settings

GETTMWAVELIM

Get wave telemetry setting limits

5.59 Get hardware specifications

Command: GETHW Command type: INFO Mode: COMMAND, CONFIRMATION, MEASUREMENT, RETRIEVAL

Returns Firmware versions and Board revisions.

Argument	Description	
FW	Running DSP FW version	
FWMINOR	Running DSP FW version (minor part)	
FPGA	unning FPGA FW version	
BOOT	DSP bootloader FW Version	
DIGITAL	Board revision. Example: C-0	
INTERFACE	Board revision. Example: C-0	
ANALOG	Board revision. Example: C-0	
ANALOG2	Board 2 revision. Example: C-0	

SENSOR Board revision. Example: C-0

Example: GETHW, FW, MINOR

5.60 Add license

Command: ADDLICENSE Command type: PRODUCTION Access: User Mode: COMMAND

Reads a license key and checks it against the instrument serial number before adding it to the license key flash.

Argument	Description	
КЕҮ	The license key to add	

Example:

ADDLICENSE, KEY="9H3F5PE47HUUB" OK

5.61 Delete license

Command: DELETELICENSE Command type: PRODUCTION Access: User Mode: COMMAND

Deletes a license key from the license key flash.

Argument	Description	
KEY	The license key to delete	

Example:

DELETELICENSE, KEY="9H3F5PE47HUUB" OK

5.62 Lists license keys

Command: LISTLICENSE Command type: INFO Access: User Mode: COMMAND Lists all license keys contained in the license key flash along with a description of the functionality enabled by the key and the variant number of the license.

Argument	Description	
КЕҮ	License key	
DESC	Information about license type	
ТҮРЕ	License id	

Example:

```
LISTLICENSE
LISTLICENSE, "4X218TRTRPNUB", "High Resolution", 4
LISTLICENSE, "JKHHFNH3RPNUB", "Wave Mode", 6
LISTLICENSE, "WF3CJR6PRPNUB", "Current Profiler", 1
OK
$PNOR, LISTLICENSE*76
$PNOR, LISTLICENSE, KEY="4X218TRTRPNUB", DESC="High
Resolution", TYPE=4*73
$PNOR, LISTLICENSE, KEY="JKHHFNH3RPNUB", DESC="Wave Mode", TYPE=6*00
$PNOR, LISTLICENSE, KEY="WF3CJR6PRPNUB", DESC="Current
Profiler", TYPE=1*1C
$PNOR, OK*2B
```

6 Binary data formats

This chapter describes the binary data formats used by the Signatures. With the Signature instruments you get binary data stored to two files on the recorder:

[filename]_avgd.ad2cp - contains averaged current data for the Signature. The data is averaged over the configured average interval and saved as Data Format 3. Note that some internal quality control has been applied to this data. For more information about the data format and the internal quality control, please refer to the Quality Control chapter. If the onboard wave processing has been enabled, the processed wave data can also be found in this file.

[filename].ad2cp contains the raw single ping data, both for the average currents and burst data such as raw wave data, high resolution measurements or echosounder data. The data is saved as Data Format 3.

The data formats themselves are described in the following chapters. Note that the binary data formats all use a common header that specifies how the rest of the data block should be interpreted, containing information about data type, size etc. The header is documented separately as _HeaderData. A data block is the data from and including one header to the next, and can for example contain data from one velocity profile. We use the leading underscore in the chapter title to emphasize that this is not a complete data set, but is a part used by two or more other data formats. Note that for Data Format 3 we also have two other common data fields shared by several data formats (see illustration in the table below).

Binary data is always outputted as Little Endian.

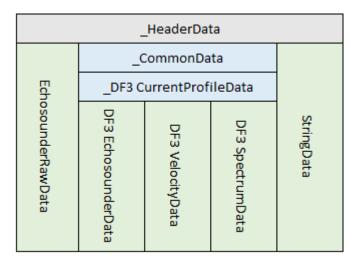


Figure: Showing how common data fields (gray for header and blue for other common's) relate to the sensor specific data fields (green). Note that we use a leading underscore (_) to emphasize that this is not a sensor data format but is common and used by two or more data formats.

About the tables

The tables have the columns **Field**, **Position/Size** and **Description**. While Field and Description provide the name and additional details about a specific field, **Position** and **Size** are described in more detail below:

Position indicates the location of a field in the data block. This refers to the byte position, counting from zero at the first byte. Note that there are two separate counts for the header, and the data following the header, so the count starts from zero again after the header. For instance, the Data Series ID is at position 2 in the header of the data block. The Serial number (see _CommonData) has position 4 in the data following the header.

Some positions are not fixed but depend on the fields in front of them. In these cases, Offset of Data (position 1 of the data following the header, see _CommonData) can be used to determine the position of the following fields. When this is relevant, the position in the table will not be given as a number but as a variable name such as OFFSET. Variable descriptions are listed below the tables where they are used.

Size refers to the data type of the field. For example, the Data Series ID in the header is an unsigned integer of 8 bits (uint8). Note that not all fields have a specific data type; some are objects requiring a certain number of bits. For instance, the status bit mask has a size of 32 bits. For fields where the size is given in bits, a more detailed description of the field and each of the bits is listed separately below the table where they are used.

6.1 _HeaderData

The header definition for binary data formats. Note that the header may be verified without reading the rest of the data block since it has its own checksum.

Field	Position Size	Description
Sync byte	0 uint8	Always 0xA5.
Header size	1 uint8	Number of bytes in the headers. Normally it is 10 bytes, but in a few cases it may be 12 bytes to hold data size of 32 bytes.
Data series id	2 uint8	Defines the type of the following Data Record. 0x15 - Burst data as DF3. 0x16 - Average data as DF3. 0x17 - Bottom Track Data Record. 0x18 - Interleaved Burst Data Record (beam 5). 0x1E - Altimeter Record. 0x1F - Avg Altimeter Raw Record. 0x1A - Burst Altimeter Raw Record. 0x1B - DVL Bottom Track Record. 0x1C - Echo Sounder Record. 0x23 - Echo Sounder Raw Record. 0x24 - Echo Sounder Raw Tx Record. 0x26 - Average data as DF7. 0x30 - Processed Wave Data Record. 0x1D - DVL Water Track Record. 0x28 - Vector 2 data as DF8. 0xA0 - String Data Record, eg. GPS NMEA data, comment from the FWRITE command.
Family id	3 uint8	Defines the Instrument Family. 0x10 is the Signature Family. 0x16 is the DVL family. 0x30 is the Aquadopp Generation 2 family. 0x40 is the Awac Generation 2 family.
Data size	4 unit16/uint32	Number of bytes in the following Data Record. If header size is 10, the data size is represented with a uint16. For large datasets, header may have 12 bytes giving room for a uint32 to represent data size.
Data checksum	6/8 uint16	Checksum of the following Data Record.
Header checksum	8/10 uint16	Checksum of all fields of the Header except the Header Checksum itself.

6.2 _CommonData

Used By: _DF3 CurrentProfileData

Common data definitions for parsing Nortek data format 3 (DF3) and Nortek bottom track data format 20 (DF20).

Field	Position Size	Description
Version	0 uint8	Version number of the Data Record Definition. 3 - DF3 20 - DF20
Offset of data	1 uint8	Number of bytes from start of the record to start of the actual data. Unit: [# bytes]
Serial number	4 uint32	Instrument serial number from factory.
Year	8 uint8	Number of years since 1900.
Month	9 uint8	Month number counting from 0 which is January.
Day	10 uint8	Day of the month
Hour	11 uint8	24 hour of the day
Minutes	12 uint8	Minutes.
Seconds	13 uint8	Seconds.
Hundred micro seconds	14 uint16	Hundred micro seconds from last whole second. Unit: [100 μs]
Speed of sound	16 uint16	Speed of sound used by the instrument. Raw data given as 0.1 m/s Unit: [m/s]
Temperature	18 int16	Reading from the temperature sensor. Raw data given as 0.01 °C Unit: [°C]
Pressure	20 uint32	Raw data given as 0.001 dBar Unit: [dBar]
Heading	24 uint16	Raw data given as 0.01 degrees Unit: [deg]
Pitch	26 int16	Raw data given as 0.01 degrees Unit: [deg]

Roll	28 int16	Raw data given as 0.01 degrees Unit: [deg]
Cell size	32 uint16	Size of each cell (resolution) on the beam. Raw data given as mm Unit: [m]
Nominal correlation	36 uint8	The nominal correlation for the configured combination of cell size and velocity range Unit: [%]
Battery voltage	38 uint16	Raw value given in 0.1 Volt Unit: [V]
Magnetometer.X	40 int16	X axis flux raw value in last measurement interval
Magnetometer.Y	42 int16	Y axis flux raw value in last measurement interval
Magnetometer.Z	44 int16	Z axis flux raw value in last measurement interval
Accelerometer.X	46 int16	Raw accelerometer X axis value in last measurement interval Raw value divided by 16384 will give vector [x,y,z] of length 1 Note: The unit of the instrument is gravity [g]. Conversion of Accelerometer unit less raw measurements to m/s^2: divide measurement by 16384, then multiply by calibrated gravity in Oslo, 9.819 m/s^2.
Accelerometer.Y	48 int16	Raw Y axis value in last measurement interval Raw value divided by 16384 will give vector [x,y,z] of length 1
Accelerometer.Z	50 int16	Raw Z axis value in last measurement interval. Raw value divided by 16384 will give vector [x,y,z] of length 1
Data set description	54/56 uint16	Data set description. 0-3 Physical beam used for 1st data set. 4-7 Physical beam used for 2nd data set. 8-11 Physical beam used for 3th data set. 12-16 Physical beam used for 4th data set.
Transmitted energy	56/58 uint16	Transmitted energy.
Velocity scaling	58/60 int8	Velocity scaling used to scale velocity data.
Power level	59/61 int8	Configured power level Unit: [dB]

Magnetometer temperature	60/62 int16	Magnetometer temperature reading. Uncalibrated Raw data in 1/1000 °C Unit: [°C]
Real time clock temperature	62/64 int16	Real Time Clock temperature reading Unit: [°C]
Error status	64/66 2 * 8 bits	Error bit mask <u>Object reference given in table below</u>
Ensemble counter	72/74 uint32	Counts the number of ensembles in both averaged and burst data

Position and size variables:

Name	Description
54/56	The status field is at 54 or 56 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
56/58	The status field is at 56 or 58 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
58/60	The status field is at 56 or 58 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
59/61	The status field is at 59 or 61 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
60/62	The status field is at 60 or 62 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
62/64	The status field is at 62 or 64 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
64/66	The status field is at 64 or 66 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.
72/74	The status field is at 72 or 74 depending on wether the ambiguity velocity (in DF3 CurrentProfileData) is 16bit or 32bit long.

Object reference: Error status

Error bit mask

Field	Position Size	Description
Data retrieval FIFO error	0 bit	Data retrieval FIFO error
Data retrieval overflow	1 bit	Data retrieval overflow

Data retrieval underrun	2 bit	Data retrieval Underrun
Data retrieval samples missing	3 bit	Data retrieval samples missing
Measurement not finished	4 bit	The Measurement and data storage/transmit didn't finish before next measurement started.
Sensor read failure	5 bit	Sensor read failure
Tag error beam 1 (In-phase)	8 bit	Tag error beam 1 (In-phase)
Tag error beam 1 (Quadrature-phase)	9 bit	Tag error beam 1 (Quadrature-phase)
Tag error beam 2 (In-phase)	10 bit	Tag error beam 2 (In-phase)
Tag error beam 2 (Quadrature-phase)	11 bit	Tag error beam 2 (Quadrature-phase)
Tag error beam 3 (In-phase)	12 bit	Tag error beam 3 (In-phase)
Tag error beam 3 (Quadrature-phase)	13 bit	Tag error beam 3 (Quadrature-phase)
Tag error beam 4 (In-Phase)	14 bit	Tag error beam 4 (In-phase)
Tag error beam 4 (Quadrature-phase)	15 bit	Tag Error Beam 4 (Quadrature-phase)

6.3 _DF3 CurrentProfileData

Extends: _CommonData **Used By:** DF3 EchosounderData, DF3 VelocityData, DF3 SpectrumData Common data definitions for Nortek data format 3 (DF3).

Field	Position Size	Description
Configuration bit	2	Record Configuration Bit Mask
mask	2 * 8 bits	Object reference given in table below
Blanking	34 uint16	Distance from instrument to first data point on the beam. Raw data given as cm or mm depending on status.blankingDistanceScalingInCm Unit: [m]
Temperature	37	Temperature of pressure sensor: T=(Val/5)-4.0
PressureSensor	uint8	Raw value given as 0.2 °C

		Unit: [°C]
Ambiguity Velocity	52 uint16	Ambiguity velocity, corrected for sound velocity, scaled according to Velocity scaling. 10^(Velocity scaling) m/s Unit: [m/s]
Extended status	66 2 * 8 bits	Extended status bit mask <u>Object reference given in table below</u>
Status	68 4 * 8 bits	Status bit mask. Note that bits 0, 2, 3, 4 are unused. <u>Object reference given in table below</u>

Object reference: Configuration bit mask

Record Configuration Bit Mask

Field	Position Size	Description
Has pressure sensor	0 bit	Pressure sensor value valid
Has temperature sensor	1 bit	Temperature sensor value valid
Has compass sensor	2 bit	Compass sensor value valid
Has tilt sensor	3 bit	Tilt sensor value valid
Has velocity data	5 bit	Velocity data included
Has amplitude data	6 bit	Amplitude data included
Has correlation data	7 bit	Correlation data included
Has altimeter data	8 bit	Altimeter data included
Has altimeter raw data	9 bit	Altimeter raw data included
Has AST data	10 bit	AST data included
Has echosounder data	11 bit	Echosounder data included
Has AHRS data	12 bit	AHRS data included

Has percentage good data	13 bit	Percentage data included
Has standard deviation data	14 bit	Standard deviation data included
Has spectrum data	15 bit	Amplitude spectrum data included.

Object reference: Extended status

Extended status bit mask

Field	Position Size	Description
Processor idles < 3%	0 bit	Indicates that the processor Idles less than 3 percent
Processor idles < 6%	1 bit	Indicates that the processor idles less than 6 percent
Processor idles < 12%	2 bit	Indicates that the processor idles less than 12 percent
External sound velocity probe	3 bit	Sound velocity probe velocity received
External heading, pitch, roll, and position	4 bit	External heading, pitch, roll and position received from NMEA NTKNAV
External heading	5 bit	External heading received from NMEA input
External pitch and roll	6 bit	External pitch and roll received from NMEA input
File system flush	13 bit	File system flush in progress
Internal processing	14 bit	Internal processing in progress (e.g. wave processing)
Extended status should be interpreted	15 bit	If this bit is set the rest of the word/ extended status should be interpreted

Object reference: Status

Status bit mask. Note that bits 0, 2, 3, 4 are unused.

Field	Position Size	Description
-------	------------------	-------------

Blanking distance scaling in cm	1 bit	Bit 1: Scaling of blanking distance 0: mm scaling 1: given in cm
Echosounder frequency bin	5-9 5 bit	Used only on the Signature100 which supports up to 5 packages pr frequency index. Processing is then done on the different frequency bands.
Boost running	10 bit	Boost running
Telemetry data	11 bit	Telemetry data
Echosounder index	12-15 4 bits	Echosounder frequency index. Valid numbers are 0, 1 and 2 (or 0000, 0001 and 0010) referring to frequencies 1, 2 or 3 as used in SET-/GETECHO.
Active configuration	16 bit	Bit 16: Active configuration 0: Settings for PLAN,BURST,AVG 1: Settings for PLAN1,BURST1,AVG1
Previous measurement skipped due to low voltage	17 bit	Bit 17: Last measurement low voltage skip 0: normal operation 1: last measurement skipped due to low input voltage
Previous wakeup state	18-21 4 bits	00 = bad power 01 = power applied 10 = break 11 = RTC alarm
Auto orientation	22-24 3 bits	0: "Fixed" Fixed orientation 1: "Auto" Auto Up Down 3: "AHRS3D" AHRS3D
Orientation	25-27 3 bits	 0: "XUP" Instrument x-axis defined up, heading reference axis is Z positive 1: "XDOWN" Instrument x-axis defined down, heading reference axis is Z positive 2: "YUP" Instrument y-axis defined up, heading reference axis is Z positive 3: "YDOWN" Instrument y-axis defined down, heading reference axis is Z positive 4: "ZUP" Instrument z-axis defined up, heading reference axis is X positive 5: "ZDOWN" Instrument z-axis defined down, heading reference axis is X positive 7: "AHRS" AHRS reports orientation any way it points. Example: Z down -> Roll = 180 deg.
Wake up state	28-31 4 bits	00 = bad power 01 = power applied 10 = break

11 = RTC alarm

6.4 DF3 EchosounderData

Extends: _DF3 CurrentProfileData **ID:** 0x1c

Data definitions for parsing SIGNATURE V3 echosounder data.

Field	Position Size	Description
Number of cells	30 uint16	Number of echosounder cells
Echosounder frequency	52 uint16	Echosounder frequency Unit: [Hz]
Echosounder data	OFFSET int16 * NC	Echosounder amplitude Data Raw data given as 0.01 dB/count Unit: [dB/count]

Position and size variables:

Name	Description	
NC	Number of echosounder cells given at position 30 in this dataset.	
	Offset of data given at position 1 in this dataset. Number of bytes from start of record to start of data.	

Note: There is no information in the data format on whether pulse compression is used to process the echosounder data. This must be retrieved from GETALL on the instrument or from the GETALL data string found first in a .signature file.

6.5 EchosounderRawData

ID: 0x23, 0x24

This chapter describes the Data Format used to store Echo Sounder RAW. The Echo Sounder RAW format uses the following Record IDs to store data:

Id 0x23 for the Echo Sounder raw sample data format.

Id 0x24 for Echo Sounder raw synthetic transmit pulse data format.

Field	Position Size	Description
Version	0 uint8	Version number of this Data Record Definition. Should be 1.
Offset of data	1 uint8	Number of bytes from start of record to start of non- common data fields.

		Unit: [# bytes]
Year	2 uint8	Number of years since 1900.
Month	3 uint8	Month number counting from 0 which is January.
Day	4 uint8	Day of the month
Hour	5 uint8	24 hour of the day
Minutes	6 uint8	Minutes.
Seconds	7 uint8	Seconds.
Hundred micro seconds	8 uint16	Hundred micro seconds from last whole second. Unit: [100 $\mu s]$
Error status	10 2 * 8 bits	Error bit mask. <u>Object reference given in table below</u>
Status	12 4 * 8 bits	Status bit mask. <u>Object reference given in table below</u>
Serial number	16 uint32	Instrument serial number from factory.
Number of samples	20 uint32	Number of following complex samples.
Start sample index	24 uint32	Sample number where the position is equal to the configured blanking distance. Value is calculated with a nominal sound speed of 1500m/s.
Sampling rate	28 float	Raw data sampling rate. Unit: [Hz]
Echosounder raw data	OFFSET int32 * SAMPLES * 2	The Data consists of an array of length as given above in position 20 (Number of samples). Each Sample is of type Complex Fract32 with a real and an imaginary part.
		typedef struct { fract32 re; fract32 im; } complex_fract32;
		Fract32 is a signed 32bit data format used to represent values [-1, +1>. Fract32 values range from -2^31 to +2^31 -1. For converting, you take the fract32 as a signed long (32-bit), cast it to float and then divide it with 2^31.

Object reference: Error status

Error bit mask.

Field	Position Size	Description
Data retrieval FIFO error	0 bit	Data retrieval FIFO error
Data retrieval overflow	1 bit	Data retrieval overflow
Data retrieval underrun	2 bit	Data retrieval Underrun
Data retrieval samples missing	3 bit	Data retrieval samples missing
Measurement not finished	4 bit	Measurement not finished The Measurement and data storage/transmit didn't finish before next measurement started.
Sensor read failure	5 bit	Sensor read failure
Tag error beam 1 (In-phase)	8 bit	Tag error beam 1 (In-phase)
Tag error beam 1 (Quadrature-phase)	9 bit	Tag error beam 1 (Quadrature-phase)
Tag error beam 2 (In-phase)	10 bit	Tag error beam 2 (In-phase)
Tag error beam 2 (Quadrature-phase)	11 bit	Tag error beam 2 (Quadrature-phase)
Tag error beam 3 (In-phase)	12 bit	Tag error beam 3 (In-phase)
Tag error beam 3 (Quadrature-phase)	13 bit	Tag error beam 3 (Quadrature-phase)
Tag error beam 4 (In-Phase)	14 bit	Tag error beam 4 (In-phase)
Tag error beam 4 (Quadrature-phase)	15 bit	Tag Error Beam 4 (Quadrature-phase)

Object reference: Status

Status bit mask.

Field Position Description

	Size	
Wake up state	0 uint32	Bit 31-28: Wakeup State 1111 0000 0000 0000 0000 0000 0000 000
Orientation	0 uint32	Bit 27-25: Orientation 0000 1110 0000 0000 0000 0000 0000 000
Auto orientation	0 uint32	Bit 24-22: autoOrientation 0000 0001 1100 0000 0000 0000 0000 000
Previous Wake up state	0 uint32	Bit 27-18: Previous Wakeup State 0000 0000 0011 1100 0000 0000 0000 000
Last measurement low voltage skip	0 uint32	Bit 17: Last measurement low voltage skip 0000 0000 0000 0010 0000 0000 0000 000
Active configuration	0 uint32	Bit 16: Active configuration 0000 0000 0000 0001 0000 0000 0000 000
Echo Index	0 uint32	Bit 15-12: Echo Index 0000 0000 0000 0000 1111 0000 0000 000
Telemetry Data	0 uint32	Bit 11: Telemetry Data 0000 0000 0000 0000 0000 1000 0000 000
Boost Running	0 uint32	Bit 10: Boost Running 0000 0000 0000 0000 0000 0100 0000 000

Echo Frequency Bin	0 uint32	Bit 9-5: Echo Frequency Bin 0000 0000 0000 0000 0000 0011 1110 0000 Echogram bin number when using binned frequency response
BD Scaling	0 uint32	Bit 1: BD Scaling 0000 0000 0000 0000 0000 0000 0000 00

6.6 DF3 VelocityData

Extends: _DF3 CurrentProfileData **ID:** 0x15, 0x16, 0x18, 0x1e, 0x1a, 0x1f

Data definitions for parsing Nortek velocity data format 3.

Field	Position Size	Description
Beams, coordinates and cells	30 2 bytes	Number of beams, coordinate system and number of cells. Object reference given in table below
Velocity data	OFFSET int16 * VEL_NB * VEL_NC	This field exists if the Velocity data included bit of the Config byte is set. 10^(Velocity Scaling) Unit: [m/s]
Amplitude data	AMP_POS uint8 * AMP_NB * AMP_NC	This field exists if the amplitude data included bit of the Config byte is set 0.5 dB/count Unit: [dB]
Correlation data	CORR_POS uint8 * CORR_NB * CORR_NC	This field exists if the Correlation data included bit of the Config byte is set [0 – 100 %] Unit: [%]
Altimeter data.Altimeter distance	ALTI_POS float	Distance to surface from Leading Edge algorithm Unit: [m]
Altimeter data.Altimeter quality	ALTI_POS + 4 uint16	Result of LE algorithm. When quality is deemed too low according to instrument specific limits both the distance and quality are set to 0.
Altimeter data.Altimeter status	ALTI_POS + 6 2 * 8 bits	Altimeter status bit mask
AST data.AST distance	AST_POS float	Distance to surface from Max Peak/AST algorithm Unit: [m]

AST data.AST quality	AST_POS + 4 uint16	Amplitude at which surface is detected with the Max Peak/AST algorithm. Raw data in steps of 0.01 dB, i.e. quality of 8000 = 80 dB Unit: [dB]
AST data.AST offset	AST_POS + 6 int16	Offset in step of measurement to velocity measurement Raw data given in 100 μs Unit: [s]
AST data.AST pressure	AST_POS + 8 float	Pressure value measured during the AST/altimeter ping Unit: [dbar]
Altimeter raw data.Num RawSamples	ALTIRAW_START + 8 uint32	Altimeter Raw Data – Number of Samples
Altimeter raw data.Samples distance	ALTIRAW_START + 12 uint16	Distance between samples Raw data given in 0.1mm Unit: [m]
Altimeter raw data.Data samples	ALTIRAW_START + 14 int16 * NRS	Altimeter Raw Data – Samples Raw data given as 16 bits Signed fract
AHRS data.Rotation matrix	AHRS_START float * 3 * 3	AHRS Rotation Matrix [3x3]
AHRS data.Quaternion W	AHRS_START + 36 float	W quaternion
AHRS data.Quaternion X	AHRS_START + 40 float	X quaternion
AHRS data.Quaternion Y	AHRS_START + 44 float	Y quaternion
AHRS data.Quaternion Z	AHRS_START + 48 float	Z quaternion
AHRS data.Gyro X	AHRS_START + 52 float	Gyro in X direction in degrees pr second Unit: [dps]
AHRS data.Gyro Y	AHRS_START + 56 float	Gyro in Y direction in degrees pr second Unit: [dps]
AHRS data.Gyro Z	AHRS_START + 60 float	Gyro in Z direction in degrees pr second Unit: [dps]
Percentage good data	PGD_START uint8 * PGD_LEN	Percent Good Estimate per cell This field exists if the Percentage Good data is included. For the Signature instruments, this will only be relevant for the _avgd.ad2cp file. Unit: [%]
Standard deviation data.Pitch	SD_START int16	Standard deviation on pitch data Raw data in 0.01 degrees

		Unit: [deg]
Standard deviation data.Roll	SD_START + 2 int16	Standard deviation on roll data Raw data in 0.01 degrees Unit: [deg]
Standard deviation data.Heading	SD_START + 4 int16	Standard deviation on heading data Raw data in 0.01 degrees Unit: [deg]
Standard deviation data.Pressure	SD_START + 6 int16	Standard deviation on pressure data Raw data in 0.001 Bar Unit: [bar]

Position and size variables:

Name	Description	
VEL_NB	Primary dimension of velocity data is number of beams. Length 0 if correlation data in configuration bit map is false.	
VEL_NC	Second dimension of velocity data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.	
OFFSET	Offset of data given at position 1 in this dataset. Number of bytes from start of record to start of data.	
AMP_NB	Primary dimension of amplitude data is number of beams. Length 0 if correlation data in configuration bit map is false.	
AMP_NC	Second dimension of amplitude data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.	
AMP_POS	Correlation data starts after the amplitude data.	
CORR_NB	Primary dimension of correlation data is number of beams. Length 0 if correlation data in configuration bit map is false.	
CORR_NC	Second dimension of correlation data is number of cells pr beam. Length 0 if correlation data in configuration bit map is false.	
CORR_POS	Correlation data starts after the amplitude data.	
ALTI_POS	Altimeter data starts after the correlation data.	
AST_POS	AST data starts after the altimeter data.	
NRS	Number of raw samples given as first element of this object.	
ALTIRAW_START	Altimeter raw data starts after the AST data.	
AHRS_START	AHRS data follows the altimeter raw data.	
PGD_START	Percent good data follows the AHRS data.	
SD_START	The standard deviation data follows percent good data.	

Object reference: Beams, coordinates and cells

Field	Position Size	Description
Number of beams	15-12 2 bits	Number of Beams (NB) Active beams represented as a 4 char string of 1s and Os.
Coordinate system	11-10 2 bits	Coordinate system 00 = ENU 01 = XYZ 10 = BEAM 11 = not used
Number of cells	9-0 10 bits	Number of Cells (NC).

Number of beams, coordinate system and number of cells.

6.7 DF3 SpectrumData

Extends: _DF3 CurrentProfileData **ID:** 0x20

Data definitions for parsing DF3 amplitude spectrum data.

Field	Position Size	Description
Beams and bins	30 2 bytes	Number of bins in the frequency spectrum. Object reference given in table below
Spectrum data.Start frequency	OFFSET float	Start frequency value Unit: [Hz]
Spectrum data.Step frequency	OFFSET + 4 float	Step frequency value Unit: [Hz]
Spectrum data.Frequency data	OFFSET + 64 int16 * BEAMS * BINS	Frequency spectrum amplitude data. There is room for 16 floating points for a spectrum header before the frequency data. Unit: [dB]

Position and size variables:

Name	Description
BEAMS	Matrix first dimension is number of beams. Eg: [[f_start,, f_{start+step*(bins-1)}]_{beam1} [f_start,, f_{start+step*(bins-1)}]_{beam2} [f_start,, f_{start+step*(bins-1)}]_{beams}]
BINS	Per beam, frequencies are given as an array of length as number of bins. First element is the start frequency and frequencies increment by step frequency per

	element of the array. Eg: [[f_start, f_{start+step}, f_{start+step*2},, f_{start+step*(bins-1)}] _{beam1},,]
16+BEAMSxBINSx2	If configuration.hasSpectrumData is false, spectrum data is length 0. RAW: !this.configuration.hasSpectrumData ? 0 : this.beamsAndBins.numberOfBeams*this.beamsAndBins.numberOfBins*2 + 16*4
OFFSET	Number of bytes from start of record to start of data.

Object reference: Beams and bins

Number of bins in the frequency spectrum.

Field	Position Size	Description
Number of beams	15-13 3 bits	Number of active beams.
Number of bins	12-0 13 bits	Number of bins.

6.8 WaveData

ID: 0x30

This chapter describes the Wave Data Format. In order to enable onboard processed wave data a wave processing license is required. Upon retrieval, the binary processed wave data can be found in the _avgd.ad2cp file. For more information about the processing routine, please refer to the Principles of Operation - Waves manual.

Field	Position Size	Description
Version	0 uint8	Version number of this Data Record Definition. Should be 1.
Offset of data	1 uint8	Number of bytes from start of record to start of non- common data fields. Unit: [bytes]
Included data	2 2 * 8 bits	Bit mask to enable/disable data output. Object reference given in table below
Serial number	4 uint32	Instrument serial number from factory.
Year	8 uint8	Number of years since 1900.
Month	9 uint8	Month number counting from 0 which is January.

Day	10 uint8	Day of the month
Hour	11 uint8	24 hour of the day
Minutes	12 uint8	Minutes.
Seconds	13 uint8	Seconds.
Hundred micro seconds	14 uint16	Hundred micro seconds from last whole second. Unit: [100 $\mu s]$
Wave counter	16 uint16	Counting from 1
Error	18 4 * 8 bits	Error bitmask <u>Object reference given in table below</u>
Status	22 4 * 8 bits	Wave status bit mask. <u>Object reference given in table below</u>
Spectrum type	26 uint8	Spectrum type used in processing. Values may be: 0: Pressure 1: Velocity 2: Auto depth 3: AST only
Processing method	27 uint8	Processing method for direction. 2 = SUV , 4 = MLMST
Target cell	28 uint8	
Unused	29 uint8	Unused bytes
Number of no detects	30 uint16	Number of ST Bad detects Unit: [#]
Number of bad detects	32 uint16	Number of ST Bad detects Unit: [#]
Cut off frequency	34 float	Cut off frequency, directional estimates are valid for frequencies below this limit Unit: [Hz]
Processing time	38 float	Processing time duration Unit: [s]
Number of zero crossings	42 uint16	Number of wave zero crossings
Version string	44 4 bytes	Version as string
Unused	48	56 unused spare bytes

	54 bytes	
WaveData	OFFSET WD_L bytes	Wave parameters Object reference given in table below
SwellWaves	SWELL_P SWELL_L bytes	Wave Bands Data for swells (lower frequencies). There are two bands separated with BANDSEPFREQ in SETWAVEPROC <u>Object reference given in table below</u>
SeaWaves	SEA_P SEA_L bytes	Wave Bands Data for sea waves (higher bands). There are two bands separated with BANDSEPFREQ Object reference given in table below
EnergySpectrum	WS_P WS_L bytes	Wave energy spectrum Object reference given in table below
FourierCoefficients	WFC_P WFC_L bytes	Wave fourier coefficients data Object reference given in table below
Direction	WDIR_P WDIR_L bytes	Wave direction data Object reference given in table below

Position and size variables:

Name	Description
WD_L	If 'Wave Pars' is true in the 'Included' bit mask, Wave data length (WD_L) is given by 80 bytes (20 floats) and 20 spare bytes.
OFFSET	Offset of data given at position 1 in this dataset. Number of bytes from start of record to start of data.
SWELL_L	If 'Wave band' is true in the 'Included' bit mask, the length of swell band is given by 52 bytes.
SWELL_P	The position of the swell band data are the sum of OFFSET and WD_L.
SEA_L	If 'Wave band' is true in the 'Included' bit mask, the length of sea band is given by 52 bytes.
SEA_P	The position of the sea band data are the sum of OFFSET, WD_L and SWELL_L.
WS_L	If 'energy spectra' is true in the 'Included' bit mask, length is given by 14 bytes (3 floats and a unit16) and 22 spare bytes and 4 times nBins in the dataset.
WS_P	Position of wave spectrum data are the sum of OFFSET, WD_L and WB_L.
WFC_L	If 'Fourier spectra' is true in the 'Included' bit mask, the fourier coefficients data Length (FC_L) is given by 14 bytes (3 floats and a unit16) and 22 spare bytes and nBins times 4 coefficients each a float (nBins*4*4).
WFC_P	Position of wave fourier coefficients (FC_P) are the sum of OFFSET, WD_L, WB_L and WS_L.
WDIR_L	If 'Wave direction spectra' is true in the 'Included' bit, wave direction length (WDIR_L) is given by 14 bytes (3 floats and a unit16) and 22 spare bytes.

WDIR_P	Position of wave direction spectra (WDIR_P) is the sum of OFFSET, WD_L, WB_L,
	WS_L and WFC_L.

Object reference: Included data

Bit mask to enable/disable data output.

Field	Position Size	Description
Wave parameters	0 bit	When 1, wave parameters is included in dataset
Energy spectra	1 bit	When 1, energy spectra is included in dataset
Wave band	2 bit	When 1, wave band is included in dataset
Fourier spectra	3 bit	When 1, fourier spectra is included in output.
Wave direction spectra	4 bit	When 1, Wave direction spectra is included in dataset
Unused	5-16 11 bits	These bits a not used.

Object reference: Error

Error bitmask

Field	Position Size	Description
No pressure	0 bit	
Low pressure	1 bit	
Low amp	2 bit	
White noise	3 bit	
Unreasonable estimation	4 bit	
Never processed	5 bit	
AST out of bound	6 bit	

Direction ambiguity	7 bit	
No pressure peak	8 bit	
Close to clip	9 bit	
AST height loss	10 bit	
High tilt	11 bit	
Correlation	12 bit	
Unused	13-31 19 bits	These bits a not used.

Object reference: Status

Wave status bit mask.

Field	Position Size	Description
Unused	0-15 16 bits	These bits a not used.
Active configuration	16 bit	
Unused	17-32 15 bits	These bits a not used.

Object reference: WaveData

Wave parameters

Field	Position Size	Description
Height 0	0 float	Spectral significant wave height. Unit: [m]
Height 3	4 float	AST significant (33%) wave height. Unit: [m]
Height 10	8 float	AST wave height, top 10%. Unit: [m]
Height max	12 float	AST max wave height in wave ensemble. Unit: [m]

Height mean	16 float	AST mean wave height in wave ensemble. Unit: [m]
Period mean	20 float	Mean period spectrum based. Unit: [s]
Period peak	24 float	Peak period. Unit: [s]
Period Z	28 float	AST mean zero-crossing period. Unit: [s]
Period 1/3	32 float	Mean 1/3 period. Unit: [s]
Period 1/10	36 float	Mean 1/10 period. Unit: [s]
Period max	40 float	Period for maximum wave. Unit: [s]
Period energy	44 float	Wave energy period. Unit: [s]
Direction at peak period	48 float	Direction at peak period. Unit: [deg]
Spreading at peak period	52 float	Spreading at peak period. Unit: [deg]
Wave direction mean	56 float	Mean wave direction. Unit: [deg]
Unidirectivity index	60 float	Unidirectivity index [0-1].
Pressure mean	64 float	Mean pressure during burst. Unit: [m]
Current speed mean	68 float	Mean current speed - wave cells. Unit: [m/sec]
Current direction mean	72 float	Mean current direction - wave cells. Unit: [deg]
AST distance mean	76 float	Mean AST distance during burst. Unit: [m]
Unused	80 20 bytes	20 unused spare bytes

Object reference: SwellWaves

Wave Bands Data for swells (lower frequencies). There are two bands separated with BANDSEPFREQ in SETWAVEPROC

Field	Position	Description
-------	----------	-------------

	Size	
Low frequency	0 float	Unit: [Hz]
High frequency	4 float	Unit: [Hz]
Height 0	8 float	Spectral significant wave height [m] Unit: [m]
Period mean	12 float	Mean period spectrum based. Unit: [s]
periodPeak	16 float	Peak period Unit: [s]
Direction at peak period	20 float	Direction at peak period. Unit: [deg]
Wave direction mean	24 float	Mean wave direction. Unit: [deg]
Spreading at peak period	28 float	Spreading at peak period. Unit: [deg]
Unused	32 20 bytes	Unused 20 bytes

Object reference: SeaWaves

Wave Bands Data for sea waves (higher bands). There are two bands separated with BANDSEPFREQ

Field	Position Size	Description
Low frequency	0 float	Unit: [Hz]
High frequency	4 float	Unit: [Hz]
Height 0	8 float	Spectral significant wave height [m] Unit: [m]
Period mean	12 float	Mean period spectrum based. Unit: [s]
periodPeak	16 float	Peak period Unit: [s]
Direction at peak period	20 float	Direction at peak period. Unit: [deg]
Wave direction mean	24 float	Mean wave direction. Unit: [deg]

Spreading at peak period	28 float	Spreading at peak period. Unit: [deg]
Unused	32 20 bytes	Unused 20 bytes

Object reference: EnergySpectrum

Wave energy spectrum

Field	Position Size	Description
Low frequency	0 float	Unit: [Hz]
High frequency	4 float	Unit: [Hz]
Step frequency	8 float	Unit: [Hz]
nBins	12 uint16	Number of spectral bins (default 98)
Unused	14 22 bytes	Unused 20 bytes
Data	36 float * 1 * nBins	Energy spectrum data stored as an array of nBins length. Unit: [cm^2/Hz]

Object reference: FourierCoefficients

Wave fourier coefficients data

Field	Position Size	Description
Low frequency	0 float	Unit: [Hz]
High frequency	4 float	Unit: [Hz]
Step frequency	8 float	Unit: [Hz]
nBins	12 uint16	Number of spectral bins (default 98)
Unused	14 22 bytes	Unused 20 spare bytes
Coefficients	36	Fourier coefficients stored as 4 x nBins matrix:

float * 4 * nBins	[A1[nBins] B1[nBins] A2[nBins] B2[nBIns]].
	Values range from [-1, 1].

Object reference: Direction

Wave direction data

Field	Position Size	Description
Low frequency	0 float	Unit: [Hz]
High frequency	4 float	Unit: [Hz]
Step frequency	8 float	Unit: [Hz]
nBins	12 uint16	Number of spectral bins (default 98)
Unused	14 22 bytes	Unused spare 20 bytes
Data	36 float * 2 * nBins	Wave direction data as a 2 x nBins matrix. Md[nBins] - Directional spectrum Ds[nBins] - Directional spread spectrum.

6.9 StringData

ID: 0xa0

String Data Record, eg. GPS NMEA data, comment from the FWRITE command.

Field	Position Size	Description
String	0 Size of record bytes	String data record.

7 Telemetry Data Formats

This section describes the Telemetry Data formats. Telemetering data means to send data packets over the communications line while the instrument is measuring. While data is telemetered, the raw data will be saved on the recorder for later retrieval. Note that different data types have separate telemetry data formats (see the following chapters). Telemetry of each data type needs to be configured individually by their specific command. **SETTMAVG** is for example used to configure telemetry of average current data while **SETTMWAVE** is used to configure telemetry of processed wave data. The telemetry data formats can be configured both to be outputted over the serial communication line, or to be save to the recorder. The telemetry file output will be saved to the recorder in a file named "telemetryfile.bin" when enabled.

The ASCII telemetry data that is transmitted by the Signature series of instruments is quality controlled before it is sent, and any data that is deemed unreliable is flagged. The criteria for one data point being flagged as unreliable is the correlation being less than 50% for the measurement, and if more than 50% of the data points within an average interval is considered bad the whole cell is flagged in the outputted data. The flag values are as follows:

- Velocity: -32.767 m/s
- Speed: 46.34 m/s
- Direction: 225°

All ASCII telemetry data formats go through this QC and it is not possible to disable this. If you need the unflagged data, this must be retrieved from the instrument recorder. For more information about the correlation parameter, please refer to the <u>Principles of Operation - Currents</u>.

The checksum calculation is part of the NMEA standard. It is the representation of two hexadecimal characters of an XOR if all characters in the sentence between – but not including – the \$ and the * character.

7.1 Averaging Mode

The telemetry of the AVG mode is controlled by the **SET/GETTMAVG** command. The DF parameter of this command sets the data format.

Data format (DF)	Description
3	Binary format as described in the binary data formats chapter.
100	Same NMEA format as previous generations of Aquadopp/AWAC. Note that Signatures produce extra columns for the fourth beam. (NMEA sentences: PNORI, PNORS and PNORC).
101	NMEA format 1 (without tags). (NMEA sentences: PNORI1, PNORS1 and PNORC1).
102	NMEA format 2 (with tags). (NMEA sentences: PNORI2, PNORS2 and PNORC2).
103	NMEA format 3 (with tags). (NMEA sentences: PNORH3, PNORS3 and PNORC3).
104	NMEA format 4 (without tags). (NMEA sentences: PNORH4, PNORS4 and PNORC4).
150	RDI Workhorse PD0 data format. Refer to RDI for documentation.

7.1.1 NMEA Format (DF=100) Information (configuration): \$PNORI

Column	Description	Data format	Example
0	Identifier	"\$PNORI"	
1	Instrument type	N 0=Aquadopp 2=Aquadopp Profiler 4=Signature	4
2	Head ID	String	Signature10009 00001
3	Number of beams	Ν	4
4	Number of cells	Ν	20
5	Blanking (m)	dd.dd	0.20
6	Cell size (m)	dd.dd	1.00
7	Coordinate system	N 0=ENU 1=XYZ 2=BEAM	0
8	Checksum	*hh	2E

Example (DF=100): \$PNORI,4,Signature1000900001,4,20,0.20,1.00,0*2E

Sensor data: \$PNORS

Column	Description	Data format	Example
0	Identifier	"\$PNORS"	
1	Date	MMDDYY	102115
2	Time	HHMMSS	090715
3	Error Code (hex)	hh	0000000
4	Status Code (hex)	hh	2A480000
5	Battery Voltage	dd.d	14.4
6	Sound Speed	dddd.d	1523.0
7	Heading	ddd.d	275.9
8	Pitch (deg)	dd.d	15.7
9	Roll (deg)	dd.d	-2.3
10	Pressure (dBar)	ddd.ddd	0.000
11	Temperature (deg C)	dd.dd	22.45

12	Analog input #1	n/a	0
13	Analog input #2	n/a	0
14	Checksum	*hh	1C

Example (DF=100):

\$PNORS,102115,090715,0000000,2A480000,14.4,1523.0,275.9,15.7,2.3,0.000,22. 45,0,0*1C

Current velocity data: \$PNORC

Column	Description	Data format	Example
0	Identifier	"\$PNORC"	
1	Date	MMDDYY	102115
2	Time	HHMMSS	090715
3	Cell number	Ν	4
4	Velocity 1 (m/s) (Beam1/X/East)	dd.dd	0.56
5	Velocity 2 (m/s) (Beam2/Y/North)	dd.dd	-0.80
6	Velocity 3 (m/s) (Beam3/Z1/Up1)	dd.dd	-1.99
7	Velocity 4 (m/s) (Beam4/Z2/Up2) - not relevant for three beam systems, will be empty	dd.dd	-1.33
8	Speed (m/s)	dd.dd	0.98
9	Direction (deg)	ddd.d	305.2
10	Amplitude unit	C=Counts	С
11	Amplitude (Beam 1)	Ν	80
12	Amplitude (Beam 2)	Ν	88
13	Amplitude (Beam 3)	Ν	67
14	Amplitude (Beam 4) - not relevant for three beam systems, will be empty	Ν	78
15	Correlation (%) (Beam1)	Ν	13
16	Correlation (%) (Beam2)	Ν	17
17	Correlation (%) (Beam3)	Ν	10
18	Correlation (%) (Beam4) - not relevant for three beam systems, will be empty	Ν	18
19	Checksum	*hh	22

Example (DF=100): \$PNORC, 102115, 090715, 4, 0.56, -0.80, -1.99, -1.33, 0.98, 305.2, C, 80, 88, 67, 78, 13, 17, 10, 18*22

7.1.2 NMEA Format 1 and 2 (DF=101/102)

Information Data:

Identifier: PNORI1 for DF = 101 (without tags) PNORI2 for DF = 102 (with tags)

PNORI2 for DF = 102 (with tags)

Column	Description	Unit	TAG	Data format	Example
1	Instrument type		IT	N 0=Aquadopp 2=Aquadopp Profiler 4=Signature	IT=4
2	Head ID		SN	Ν	SN=123456
3	Number of Beams		NB	Ν	NB=4
4	Number of Cells		NC	Ν	NC=30
5	Blanking Distance	[m]	BD	dd.dd	BD=1.00
6	Cell Size	[m]	CS	dd.dd	CS=5.00
7	Coordinate System (ENU,BEAM,XYZ)		CY	Ν	CY=BEAM

Example (DF=101):

\$PNORI1,4,123456,4,30,1.00,5.00,BEAM*5B Example (DF=102): \$PNORI2,IT=4,SN=123456,NB=4,NC=30,BD=1.00,CS=5.00,CY=BEAM*68

Sensors Data:

Identifier: PNORS1 for DF = 101 (without tags) PNORS2 for DF = 102 (with tags)

Column	Description	Unit	TAG	Data format	Example
1	Date		DATE	MMDDYY	DATE=083 013
2	Time		TIME	HHMMSS	TIME=1324 55
3	Error Code		EC	Ν	EC=0
4	Status Code		SC	hhhhhhh	SC=340000 34
5	Battery Voltage	[V]	BV	dd.d	BV=22.9
6	Sound Speed	[m/s]	SS	dddd.d	SS=1500.0
7	Heading Std.Dev.	[deg]	HSD	dd.dd	HSD=0.02
8	Heading	[deg]	Н	ddd.d	H=123.4

9	Pitch	[deg]	PI	dd.d	PI=45.6
10	Pitch Std.Dev	[deg]	PISD	dd.dd	PISD=0.02
11	Roll	[deg]	R	dd.d	R=23.4
12	Roll Std.Dev.	[deg]	RSD	dd.dd	RSD=0.02
13	Pressure	[dBar]	Ρ	ddd.ddd	P=123.456
14	Pressure StdDev	[dBar]	PSD	dd.dd	PSD=0.02
15	Temperature	[deg C]	Т	dd.dd	T=24.56

Example (DF=101):

\$PNORS1,083013,132455,0,34000034,22.9,1500.0,0.02,123.4,45.6,0.02,R=23.4,0.02,123.456,0.02,24. 56*39

Example (DF=102):

\$PNORS2,DATE=083013,TIME=132455,EC=0,SC=34000034,BV=22.9,SS=1500.0,HSD=0.02,H=123.4,PI=45.6,PISD=0.02,R=23.4,RSD=0.02,P=123.456,PSD=0.02,T=24.56*3F

Averaged Data:

Identifier: PNORC1 for DF = 101 (without tags) PNORC2 for DF = 102 (with tags)

The averaged data is repeated for each measurement cell.

Column	Description	Unit	TAG	Data format	Example
1	Date		DATE	MMDDYY	DATE=0830 13
2	Time		TIME	HHMMSS	TIME=1324 55
3	Cell Number		CN	Ν	CN=3
4	Cell Position	[m]	СР	dd.d	CP=11.0
5	Velocity East - only included if CY=ENU	[m/s]	VE	dd.ddd	VE=0.332
6	Velocity North - only included if CY=ENU	[m/s]	VN	dd.ddd	VN=0.332
7	Velocity Up - only included if CY=ENU	[m/s]	VU	dd.ddd	VU=0.332
8	Velocity Up 2 - only included if CY=ENU	[m/s]	VU2	dd.ddd0	VU2=0.332
9	Velocity X - only included if CY = XYZ	[m/s]	VX	dd.ddd	VX=0.332
10	Velocity Y - only included if CY = XYZ	[m/s]	VY	dd.ddd	VY=0.332
11	Velocity Z - only included if CY = XYZ	[m/s]	VZ	dd.ddd	VZ=0.332
12	Velocity Z 2 - only included if CY=XYZ	[m/s]	VZ2	dd.ddd	VZ2=0.332
13	Velocity Beam 1 - only included if CY=BEAM	[m/s]	V1	dd.ddd	V1=0.332

Column	Description	Unit	TAG	Data format	Example
14	Velocity Beam 2 - only included if CY=BEAM	[m/s]	V2	dd.ddd	V2=0.332
15	Velocity Beam 3 - only included if CY=BEAM	[m/s]	V3	dd.ddd	V3=0.332
16	Velocity Beam 4 - only included if CY=BEAM	[m/s]	V4	dd.ddd	V4=0.332
17	Amplitude Beam 1	[dB]	A1	ddd.d	A1=78.9
18	Amplitude Beam 2	[dB]	A2	ddd.d	A2=78.9
19	Amplitude Beam 3	[dB]	A3	ddd.d	A3=78.9
20	Amplitude Beam 4	[dB]	A4	ddd.d	A4=78.9
21	Correlation Beam 1	[%]	C1	Ν	C1=78
22	Correlation Beam 2	[%]	C2	Ν	C2=78
23	Correlation Beam 3	[%]	C3	N	C3=78
24	Correlation Beam 4	[%]	C4	N	C4=78

Example (DF=101, CY=ENU):

\$PNORC1,083013,132455,3,11.0,0.332,0.332,0.332,0.332,78.9,78.9,78.9,78.9,78 ,78,78,78*46

Example (DF=102, CY=ENU):

\$PNORC2, DATE=083013, TIME=132455, CN=3, CP=11.0, V1=0.332, V2=0.332, V3=-0.332, V4=-0.332, A1=78.9, A2=78.9, A3=78.9, A4=78.9, C1=78, C2=78, C3=78, C4=78*49

7.1.3 NMEA Format 3 and 4 (DF=103/104)

Header Data: Identifier: PNORH3 for DF = 103 (with tags) PNORH4 for DF = 104 (without tags)

Column	Description	Unit	TAG	Data format	Example
1	Date		DATE	YYMMDD	DATE=1411 12
2	Time		TIME	HHMMSS	TIME=0819 46
3	Error Code		EC	Ν	EC=0
4	Status Code		SC	hhhhhhh	SC=2A4C0 000

Example (DF=103):

\$PNORH3,DATE=141112,TIME=081946,EC=0,SC=2A4C0000*5F Example (DF=104):

\$PNORH4,141112,083149,0,2A4C0000*4A68

Sensors Data:

Identifier: PNORS3 for DF = 103 (with tags) PNORS4 for DF = 104 (without tags)

Column	Description	Unit	TAG	Data format	Example
1	Battery	[V]	BV	dd.d	BV=22.9
2	Sound Speed	[m/s]	SS	dddd.d	SS=1500.0
3	Heading	[deg]	Н	ddd.d	H=123.4
4	Pitch	[deg]	PI	dd.d	PI=45.6
5	Roll	[deg]	R	dd.d	R=23.4
6	Pressure	[dBar]	Ρ	ddd.ddd	P=123.456
7	Temperature	[deg C]	Т	dd.dd	T=24.56

Example (DF=103):

\$PNORS3,BV=22.9,SS=1546.1,H=151.1,PI=-12.0,R=-5.2,P=705.669,T=24.96*7A Example (DF=104): \$PNORS4,22.9,1546.1,151.2,-11.9,-5.3,705.658,24.95*5A

Averaged Data:

Identifier: PNORC3 for DF = 103 (with tags) PNORC4 for DF = 104 (without tags)

The averaged data is repeated for each measurement cell.

Column	Description	Unit	TAG	Data format	Example
1	Cell position	[m]	СР	dd.d	CP=2.5
2	Speed	[m/s]	SP	dd.ddd	SP=0.751
3	Direction	[deg]	DIR	ddd.d	DIR=170.1
4	Averaged Correlation		AC	Ν	AC=5
5	Averaged Amplitude		AA	Ν	AA=28

Example (DF=103): \$PNORC3, CP=4.5, SP=3.519, DIR=110.9, AC=6, AA=28*3B Example (DF=104): \$PNORC4, 27.5, 1.815, 322.6, 4, 28*70

7.2 Burst

The telemetry of the BURST mode is controlled by the **SET/GETTMBURST** command. The DF parameter of this command sets the data format.

Data format (DF)	Description
3	Binary format as described in 'Data Record Definition (version 3)'.
101	NMEA format 1 (without tags). (NMEA sentences: PNORI1, PNORS1 and PNORC1).
102	NMEA format 2 (with tags). (NMEA sentences: PNORI2, PNORS2 and PNORC2).
103	NMEA format 3 (with tags). (NMEA sentences: PNORH3, PNORS3 and PNORC3).
104	NMEA format 4 (without tags). (NMEA sentences: PNORH4, PNORS4 and PNORC4).

7.2.1 NMEA Format 1 and 2 (DF=101/102)

Information Data: Identifier: PNORI1 for DF = 101 (without tags) PNORI2 for DF = 102 (with tags)

Column	Description	Unit	TAG	Data format	Example
1	Instrument type		IT	N 0=Aquadopp 2=Aquadopp Profiler 4=Signature	IT=4
2	Head ID		SN	Ν	SN=123456
3	Number of Beams		NB	Ν	NB=4
4	Number of Cells		NC	Ν	NC=30
5	Blanking Distance	[m]	BD	dd.dd	BD=1.00
6	Cell Size	[m]	CS	dd.dd	CS=5.00
7	Coordinate System (ENU,BEAM,XYZ)		CY	Ν	CY=BEAM

Example (DF=101):

\$PNORI1,4,123456,4,30,1.00,5.00,BEAM*5B Example (DF=102): \$PNORI2,IT=4,SN=123456,NB=4,NC=30,BD=1.00,CS=5.00,CY=BEAM*68

Sensors Data:

Identifier: PNORS1 for DF = 101 (without tags) PNORS2 for DF = 102 (with tags)

Column	Description	Unit	TAG	Data format	Example
1	Date		DATE	MMDDYY	DATE=083 013
2	Time		TIME	HHMMSS	TIME=1324 55
3	Error Code		EC	Ν	EC=0
4	Status Code		SC	hhhhhhh	SC=340000 34
5	Battery Voltage	[V]	BV	dd.d	BV=22.9
6	Sound Speed	[m/s]	SS	dddd.d	SS=1500.0
7	Heading Std.Dev.	[deg]	HSD	dd.dd	HSD=0.02
8	Heading	[deg]	Н	ddd.d	H=123.4
9	Pitch	[deg]	PI	dd.d	PI=45.6
10	Pitch Std.Dev	[deg]	PISD	dd.dd	PISD=0.02
11	Roll	[deg]	R	dd.d	R=23.4
12	Roll Std.Dev.	[deg]	RSD	dd.dd	RSD=0.02
13	Pressure	[dBar]	Р	ddd.ddd	P=123.456
14	Pressure StdDev	[dBar]	PSD	dd.dd	PSD=0.02
15	Temperature	[deg C]	Т	dd.dd	T=24.56

Example (DF=101):

\$PNORS1,083013,132455,0,34000034,22.9,1500.0,0.02,123.4,45.6,0.02,R=23.4,0.02,123.456,0.02,24. 56*39

Example (DF=102):

\$PNORS2,DATE=083013,TIME=132455,EC=0,SC=34000034,BV=22.9,SS=1500.0,HSD=0.02,H=123.4,PI=45.6,PISD=0.02,R=23.4,RSD=0.02,P=123.456,PSD=0.02,T=24.56*3F

Averaged Data:

Identifier: PNORC1 for DF = 101 (without tags) PNORC2 for DF = 102 (with tags)

The averaged data is repeated for each measurement cell.

Column	Description	Unit	TAG	Data format	Example
1	Date		DATE	MMDDYY	DATE=0830 13
2	Time		TIME	HHMMSS	TIME=1324 55
3	Cell Number		CN	Ν	CN=3

Column	Description	Unit	TAG	Data format	Example
4	Cell Position	[m]	СР	dd.d	CP=11.0
5	Velocity East - only included if CY=ENU	[m/s]	VE	dd.ddd	VE=0.332
6	Velocity North - only included if CY=ENU	[m/s]	VN	dd.ddd	VN=0.332
7	Velocity Up - only included if CY=ENU	[m/s]	VU	dd.ddd	VU=0.332
8	Velocity Up 2 - only included if CY=ENU	[m/s]	VU2	dd.ddd0	VU2=0.332
9	Velocity X - only included if CY = XYZ	[m/s]	VX	dd.ddd	VX=0.332
10	Velocity Y - only included if CY = XYZ	[m/s]	VY	dd.ddd	VY=0.332
11	Velocity Z - only included if CY = XYZ	[m/s]	VZ	dd.ddd	VZ=0.332
12	Velocity Z 2 - only included if CY=XYZ	[m/s]	VZ2	dd.ddd	VZ2=0.332
13	Velocity Beam 1 - only included if CY=BEAM	[m/s]	V1	dd.ddd	V1=0.332
14	Velocity Beam 2 - only included if CY=BEAM	[m/s]	V2	dd.ddd	V2=0.332
15	Velocity Beam 3 - only included if CY=BEAM	[m/s]	V3	dd.ddd	V3=0.332
16	Velocity Beam 4 - only included if CY=BEAM	[m/s]	V4	dd.ddd	V4=0.332
17	Amplitude Beam 1	[dB]	A1	ddd.d	A1=78.9
18	Amplitude Beam 2	[dB]	A2	ddd.d	A2=78.9
19	Amplitude Beam 3	[dB]	A3	ddd.d	A3=78.9
20	Amplitude Beam 4	[dB]	A4	ddd.d	A4=78.9
21	Correlation Beam 1	[%]	C1	Ν	C1=78
22	Correlation Beam 2	[%]	C2	Ν	C2=78
23	Correlation Beam 3	[%]	C3	N	C3=78
24	Correlation Beam 4	[%]	C4	Ν	C4=78

Example (DF=101, CY=ENU):

\$PNORC1,083013,132455,3,11.0,0.332,0.332,0.332,0.332,78.9,78.9,78.9,78.9,78 ,78,78,78*46

Example (DF=102, CY=ENU):

\$PNORC2, DATE=083013, TIME=132455, CN=3, CP=11.0, V1=0.332, V2=0.332, V3=-

0.332, V4=-0.332, A1=78.9, A2=78.9, A3=78.9, A4=78.9, C1=78, C2=78, C3=78, C4=78*49

7.2.2 NMEA Format 3 and 4 (DF=103/104)

Header Data:

Identifier: PNORH3 for DF = 103 (with tags) PNORH4 for DF = 104 (without tags)

Column	Description	Unit	TAG	Data format	Example
1	Date		DATE	YYMMDD	DATE=1411 12
2	Time		TIME	HHMMSS	TIME=0819 46
3	Error Code		EC	Ν	EC=0
4	Status Code		SC	hhhhhhh	SC=2A4C0 000

Example (DF=103):

\$PNORH3,DATE=141112,TIME=081946,EC=0,SC=2A4C0000*5F Example (DF=104):

\$PNORH4,141112,083149,0,2A4C0000*4A68

Sensors Data:

Identifier: PNORS3 for DF = 103 (with tags) PNORS4 for DF = 104 (without tags)

Column	Description	Unit	TAG	Data format	Example
1	Battery	[V]	BV	dd.d	BV=22.9
2	Sound Speed	[m/s]	SS	dddd.d	SS=1500.0
3	Heading	[deg]	Н	ddd.d	H=123.4
4	Pitch	[deg]	PI	dd.d	PI=45.6
5	Roll	[deg]	R	dd.d	R=23.4
6	Pressure	[dBar]	Ρ	ddd.ddd	P=123.456
7	Temperature	[deg C]	Т	dd.dd	T=24.56

Example (DF=103):

\$PNORS3,BV=22.9,SS=1546.1,H=151.1,PI=-12.0,R=-5.2,P=705.669,T=24.96*7A Example (DF=104): \$PNORS4,22.9,1546.1,151.2,-11.9,-5.3,705.658,24.95*5A

Averaged Data:

Identifier: PNORC3 for DF = 103 (with tags) PNORC4 for DF = 104 (without tags) The averaged data is repeated for each measurement cell.

Column	Description	Unit	TAG	Data format	Example
1	Cell position	[m]	СР	dd.d	CP=2.5
2	Speed	[m/s]	SP	dd.ddd	SP=0.751
3	Direction	[deg]	DIR	ddd.d	DIR=170.1
4	Averaged Correlation		AC	Ν	AC=5
5	Averaged Amplitude		AA	Ν	AA=28

Example (DF=103):

\$PNORC3, CP=4.5, SP=3.519, DIR=110.9, AC=6, AA=28*3B
Example (DF=104):
\$PNORC4, 27.5, 1.815, 322.6, 4, 28*70

7.3 Altimeter

The telemetry for the Altimeter is controlled by the **SET/GETTMALTI** command. The DF parameter of this command sets the data format. Please note that telemetered altimeter data is always derived from the Leading Edge algorithm.

Data format (DF)	Description
200	NMEA (PNORA) format without Tags.
201	NMEA (PNORA) format with Tags.

Column	Description	Unit	TAG	Data format	Example
1	Date		DAT E	YYMMDD	DATE=130830
2	Time		TIM E	hhmmss	TIME=132455
3	Pressure	[dBar]	Р	ddd.ddd	P=123.456
4	Altimeter Distance (Leading Edge)	[m]	A	ddd.ddd	A=112.233
5	Quality Parameter		Q	Ν	Q=13068
6	Status		ST	XX	ST=00
7	Pitch	[deg]	ΡI	d.d	PI=2.3
8	Roll	[deg]	R	d.d	R=1.3

Example (DF=200):

\$PNORA,190902,122341,0.000,24.274,13068,08,-2.6,-0.8*7E

Example (DF=201):

\$PNORA,DATE=190902,TIME=122341,P=0.000,A=24.274,Q=13068,ST=08,PI=-2.6,R=-0.8*72

7.4 Waves

The telemetry of internally processed wave data is controlled by the **SET/GETTMWAVE** command. The DF parameter of this command sets the data format.

Data format (DF)	Description
500	Binary format
501	NMEA format (NMEA sentences: PNORW, PNORB, PNORE, PNORF, PNORWD)
502	Binary format, same as used by the AWAC (described in chapter 5.6.1 in the <u>Integrators Guide - Classic</u>)

7.4.1 NMEA Waves DF501

• Data with variants of -9 (-9.00, -999...) are invalid data.

• Empty fields are unused.

• The checksum calculation is part of the NMEA standard. It is the representation of two hexadecimal characters of an XOR if all characters in the sentence between – but not including – the \$ and the * characters.

Wave parameters

Column	Description	Unit	Data format
0	Identifier		"\$PNORW"
1	Date		MMDDYY
2	Time		hhmmss
3	Spectrum basis type		N 0 = Pressure 1 = Velocity 3 = AST
4	Processing method		N 1 = PUV 2 = SUV 3= MLM 4 = MLMST
5	Hm0	[m]	dd.dd
6	НЗ	[m]	dd.dd
7	H10	[m]	dd.dd
8	Hmax	[m]	dd.dd
9	Tm02	[s]	dd.dd
10	Тр	[s]	dd.dd
11	Tz	[s]	dd.dd

12	DirTp	[deg]	ddd.dd	
13	SprTp	[deg]	ddd.dd	
14	Main direction	[deg]	ddd.dd	
15	Unidirectivity index		dd.dd	
16	Mean pressure	[dbar]	dd.dd	
17	Number of no detects		Ν	
18	Number of bad detects		Ν	
19	Near surface current speed	[m/s]	dd.dd	
20	Near surface current direction	[deg]	ddd.dd	
21	Wave error code		hhhh	
22	Checksum		*hh	

Example (DF=501):

\$PNORW,120720,093150,0,1,0.89,-9.00,1.13,1.49,1.41,1.03,-9.00,190.03,80.67,113.52,0.54,0.00,1024,0,1.19,144.11,0D8B*7B

Wave band parameters

Colum n	Description	Unit	Data format
0	Identifier		"\$PNORB"
1	Date		MMDDYY
2	Time		hhmmss
3	Spectrum basis type		N 0 = Pressure 1 = Velocity 3 = AST
4	Processing method		N 1 = PUV 2 = SUV 3= MLM 4 = MLMST
5	Frequency Low		d.dd
6	Frequency High		d.dd
7	Hmo	[m]	dd.dd
8	Tm02	[s]	dd.dd
9	Тр	[s]	dd.dd
10	DirTp	[deg]	ddd.dd

11	SprTp	[deg]	ddd.dd
12	Main direction	[deg]	ddd.dd
13	Wave error code		hhhh
14	Checksum		*hh

Example (DF=501):

\$PNORB, 120720,093150,1,4,0.02,0.20,0.27,7.54,12.00,82.42,75.46,82.10,0000*67 **\$PNORB**, 120720,093150,1,4,0.21,0.99,0.83,1.36,1.03,45.00,0.00,172.16,0000*5C

Wave energy density spectrum

Column	Description	Unit	Data format
0	Identifier		"\$PNORE"
1	Date		MMDDYY
2	Time		hhmmss
3	Spectrum basis type		N 0 = Pressure 1 = Velocity 3 = AST
4	Start Frequency	[Hz]	d.dd
5	Step Frequency	[Hz]	d.dd
6	Number of Frequencies - N		nnn
7	Energy density (frequency 1)	[cm²/Hz]	ddd.ddd
8	Energy density (frequency 2)	[cm²/Hz]	ddd.ddd
N+6	Energy density (frequency N)	[cm²/Hz]	dddd.ddd
N+7	Checksum		*hh

Example (DF=501):

\$PNORE,120720,093150,1,0.02,0.01,98,0.000,0.000,0.000,0.003,0.012,0.046,0.039,0.041,0.039,0.036,0.039,0.041,0.034,0.031,0.026,0.027,0.025,0.024,0.023,0.025,0.023,0.020,0.020,0.025,0.023,0.027,0.029,0.033,0.029,0.032,0.031,0.033,0.029,0.032,0.032,0.032,0.031,0.041,0.038,0.043,0.050,0.048,0.042,0.034,0.030,0.033,0.039,0.036,0.035,0.042,0.039,0.038,0.044,0.042,0.054,0.065,0.064,0.054,0.051,0.064,0.062,0.051,0.049,0.066,0.068,0.073,0.062,0.064,0.062,0.063,0.061,0.062,0.059,0.060,0.051,0.049,0.059,0.075,0.096,0.093,0.084,0.084,0.074,0.081,0.076,0.103,0.098,0.114,0.103,0.117,0.125,0.131,0.144,0.143,0.129*71

Fourier coefficient spectra

Colum n	Description	Unit	Data format
C	Identifier		"\$PNORF"

1	Fourier coefficient flag (A1/B1/A2/B2)		"CC"
2	Date		MMDDYY
3	Time		hhmmss
4	Spectrum basis type		N 0 = Pressure 1 = Velocity 3 = AST
5	Start Frequency	[Hz]	d.dd
6	Step Frequency	[Hz]	d.dd
7	Number of Frequencies - N		nnn
8	Fourier coefficient CC (frequency 1)		dddd.ddd
9	Fourier coefficient CC (frequency 2)		dddd.ddd
N+7	Fourier coefficient CC (frequency N)		dddd.ddd
N+8	Checksum		*hh

Example (DF=501):

\$PNORF,A1,120720,093150,1,0.02,0.01,98,0.0348,0.0958,0.1372,0.1049,-0.0215,-0.0143,0.0358,0.0903,0.0350,0.0465,-0.0097,0.0549,-0.0507,-0.0071,-0.0737,0.0459,-0.0164,0.0275,-0.0190,-0.0327,-0.0324,-0.0364,-0.0255,-0.0140,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.00000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000.-9.0000.-9.0000.-9.0000.-9.0000.-9.0000.-9.0000.-9.0000*0D \$PNORF, B1, 120720, 093150, 1, 0.02, 0.01, 98, -0.0230, -0.0431,0.0282,0.0151,0.0136,0.0465,0.1317,0.1310,0.0500,0.0571,0.0168,0.0713,-0.0002,0.0164,-0.0315, 0.0656, -0.0046, 0.0364, -0.0058, 0.0227, 0.0014, 0.0077, 0.0017, 0.0041, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.00000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.00000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000*2F \$PNORF,A2,120720,093150,1,0.02,0.01,98,-0.3609,-0.0617,0.0441,0.0812,-0.0956,-0.1695,-0.3085,-0.2760,-0.2235,-0.1159,-0.0956,-0.0421,-0.0474,0.0119,0.0079,-0.0578,-0.1210,-0.1411,-0.0939,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000*26 \$PNORF,B2,120720,093150,1,0.02,0.01,98,0.6465,0.3908,0.3669,0.3364,0.6169,0.6358,0.6473,0.603 8,0.5338,0.4258,0.3862,0.3817,0.3692,0.2823,0.1669,0.1052,0.0019,-0.1209,-0.2095,-0.2144,-0.2109,-0.2509,-0.2809,-0.3491,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000

 $\begin{array}{l} 9.0000, -9.000$

Wave directional spectra

Column	Description	Unit	Data format
0	Identifier		"\$PNORWD"
1	Main direction/directional spread (MD/DS)		"CC"
2	Date		MMDDYY
3	Time		hhmmss
4	Spectrum basis type		N 0 = Pressure 1 = Velocity 3 = AST
5	Start Frequency	[Hz]	d.dd
6	Step Frequency	[Hz]	d.dd
7	Number of Frequencies - N		nnn
8	Direction/spread (frequency 1)	[deg]	dddd.ddd
9	Direction/spread (frequency 2)	[deg]	dddd.ddd
N+7	Direction/spread (frequency N)	[deg]	dddd.ddd
N+8	Checksum		*hh

Example (DF=501):

\$PNORWD,MD,120720,093150,1,0.02,0.01,98,326.5016,335.7948,11.6072,8.1730,147.6098,107.1336 ,74.8001,55.4424,55.0203,50.8304,120.0490,52.4414,180.2204,113.3304,203.1034,55.0302,195.6657, 52.9780, 196.9988, 145.2517, 177.5576, 168.0439, 176.1304, 163.7607, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000, -9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.000000,-9.0000,-9.000000,-9.00000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000*05 \$PNORWD,DS,120720,093150,1,0.02,0.01,98,79.3190,76.6542,75.1406,76.6127,79.9920,79.0342,75. 2961,74.3028,78.5193,77.9860,80.2380,77.2964,78.9473,80.3010,77.7126,77.7154,80.3341,79.1574,8 0.2208,79.4005,79.7031,79.5054,79.9868,80.4341,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.00000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000,-9.0000 9.0000.-9.0000.-9.0000.-9.0000.-9.0000.-9.0000.-9.0000*16

8 Appendices

8.1 Echosounder equations

F = frequency in kHz

 F_c = center frequency in kHz, given by the FREQ parameter for the last beam, typically BEAMCFGLIST, BEAM=5, FREQ

MajorAxis3dBBeamAngle:

$$\begin{split} & \mathsf{GETUSERECHOMAJORANGLE} \text{ values when EN=1:} \\ & \mathsf{Major} \; \mathsf{angle}_F = \mathsf{P0} + \mathsf{P1}(\mathsf{F}-\mathsf{F}_c) + \mathsf{P2}(\mathsf{F}-\mathsf{F}_c)^2 + \mathsf{P3}(\mathsf{F}-\mathsf{F}_c)^3 + \mathsf{P4}(\mathsf{F}-\mathsf{F}_c)^4 \\ & \quad + \mathsf{P5}(\mathsf{F}-\mathsf{F}_c)^5 \; [\mathsf{degrees}] \end{split}$$

MajorAxis3dBBeamAngleOffset:

GETUSERECHOMAJOROFFSET values when EN=1: Major offset_F = P0 + P1(F - F_c) + P2(F - F_c)² + \cdots + P5(F - F_c)⁵ [degrees]

MinorAxis3dBBeamAngle:

GETUSERECHOMINORANGLE values when EN=1: Minor angle_F = P0 + P1(F - F_c) + P2(F - F_c)² + \cdots + P5(F - F_c)⁵ [degrees]

MinorAxis3dBBeamAngleOffset:

GETUSERECHOMINOROFFSET values when EN=1: Minor offset_F = P0 + P1(F - F_c) + P2(F - F_c)² + \cdots + P5(F - F_c)⁵ [degrees]

TwoWayBeamAngle:

GETUSERECHOTWOWAYANGLE values when EN=1: Two way angle_F = P0 + P1(F - F_c) + P2(F - F_c)² + \cdots + P5(F - F_c)⁵ [dB steradians]

Gain:

GETUSERECHOGAIN polynomial values when EN=1. When pulse compression is enabled the polynomial expression shall define the gain over the bandwidth given by:

 $Gain_{F} = P0 + P1(F - F_{c}) + P2(F - F_{c})^{2} + \dots + P5(F - F_{c})^{5} [dB]$

The bandwidth is given in % by the BW parameter for the last beam, typically BEAMCFGLIST,BEAM=5,BW

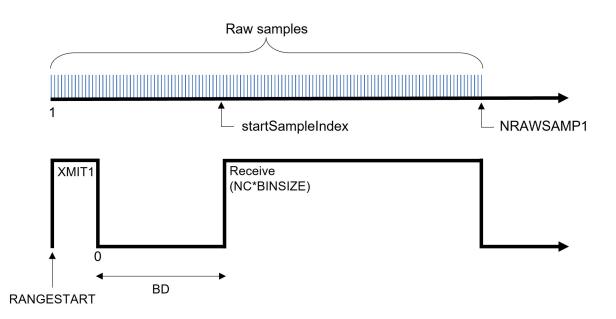
For monochromatic echograms the gains at the monochromatic frequency specified in GETECHO, FREQ is given directly for up to three frequencies:

 $Gain_{FreqA} = GAINFA [dB]$ $Gain_{FreqB} = GAINFB [dB]$ $Gain_{FreqC} = GAINFC [dB]$

8.2 Raw echosounder data parsing

The raw echosounder data includes samples received during the transmit of the pulse and the blanking distance to facilitate more flexible user processing of the raw data, i.e. the receiver starts at the same time as the transmitter. Part of the raw echosounder data structure is the field "startSampleIndex". This is the number of samples passed from when the transmission starts to the time when the firmware starts processing samples to create the echogram. Data received during the blanking duration is ignored in the firmware echogram processing. They are discarded since they either are part of a reflection of a partial pulse or from reflections within the blanking distance. A formula may be derived:

$$i_{startSample} = \frac{t_{XMIT1} + t_{2BD}}{t_{sample}} = \frac{t_{XMIT1} + 2BD}{v_{sound}} f_{rawSamples}$$


Note: i is the notation for index, t for time, v for velocity and f for frequency.

- XMIT1 = duration of the transmit pulse (ms)
- BD = blanking distance (m)

Thus: i_{startSample} = 16,368 ~ 16

The diagram below illustrates how the raw echosounder sampling works. The raw samples are transmitted and received from the start of the transmit pulse (XMIT). After the blanking distance and at startSampleIndex, the firmware will start to process the received samples (Receive) until the full range has been achieved (NC*BINSIZE). This endpoint defines the full number of samples in the raw echosounder profiler (NRAWSAMP1).

XMIT1, NC (number of cells), BINSIZE and BD can be found using the GETECHO command. RANGESTART and NRAWSAMP1 can be found using the READECHO command. As discussed, startSampleIndex is found post-measurement in the RawEchosounderData structure.

8.3 Checksum Definition

The Checksum is defined as a 16-bits unsigned sum of the data (16 bits). The sum shall be initialized to the value of 0xB58C before the checksum is calculated.

C-code for Checksum calculations:

```
unsigned short calculateChecksum(unsigned short *pData, unsigned short size)
{
    unsigned short checksum = 0xB58C;
    unsigned short nbshorts = (size >> 1);
    int i;
    for (i = 0; i < nbshorts; i++)
    {
        checksum += *pData;
        size -= 2;
        pData++;
    }
    if (size > 0)
    {
        checksum += ((unsigned short)(*pData)) << 8;</pre>
    return checksum;
}
```

Appendices	129