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Abstract— Utilizing a commercially available acoustic Doppler 
velocimeter, the Nortek Vectrino with optional plus (+) firmware, 
measurements of turbulence are made in a turbulent open 
channel flow in the 8m Research Flume of the DeFrees 
Hydraulics Laboratory. The measurements are used to estimate 
dissipation (ε ) from Kolmogorov’s 2/3, 5/3 and 4/5 Laws as well 
as integration of the dissipation spectrum. Corrections to remove 
bias due to Doppler noise are carried out when appropriate. 
Results from the four methods are compared to jusge the validity 
of each for use with single point velocity measuremnts from an 
acoustic Doppler Velocimeter. The 4/5 Law is the most consistent 
across each velocity component, but all methods produce 
reasonable estimates of dissipation from at least one velocity 
component. 

Keywords-turbulence; dissipation; pulse coherent; ADV; 
acoustic Doppler velocimeter 

I.  INTRODUCTION  
Because of its ubiquity in environmental flows, accurately 

measuring turbulence is important in many experiments. In 
addition to providing a more complete description of the flow, 
accurate turbulence measurements are essential for a variety of 
results. They are used to estimate mixing and dispersion 
coefficients for models, examine the magnitude of scalar fluxes 
like dissolved oxygen at the sediment water interface, and 
estimate sediment erosion and transport rates. 

In addition to the basic statistics such as turbulent 
intensities and the turbulent kinetic energy, researchers are also 
interested in higher order quantities like the turbulent 
dissipation rate ( ε ). Dissipation is of interest to many 
researchers because it is needed to characterize the smallest 
scales of turbulent motion, allows closure of energy budgets, 
and is essential for verifying assumptions made in 
characterizing the turbulence. 

Dissipation is difficult to measure directly because it 
involves gradients at the smallest scales of motion. In most 
flows this is at sub millimeter lengths, smaller than most 
instruments and techniques are capable of resolving. In order to 
estimate dissipation, then, researchers often turn to theoretical 
predictions on the form certain quantities will take, generally 
guided by results based on isotropic turbulence theory. A full 
review of isotropic turbulence theory is beyond the scope of 
this article. For those familiar with Kolmogorov’s theory of 

isotropic turbulence, the introduction of [1] provides a review 
of relevant calculations such as the turbulent velocity spectrum 
and the second and third order structure functions. A more 
complete review can be found in Chapters 3, 5, and 6 of [2]. 

The most important aspect of isotropic turbulence theory 
for the present discussion is referred to as Kolmogorov’s 
Second Similarity Hypothesis. In words, it states at sufficiently 
high Reynolds number the turbulent velocity spectrum and the 
velocity structure functions take on a universal form at the 
intermediate scales (the inertial subrange) uniquely determined 
by k (the wavenumber) or r (the seperation between two points) 
and ε. 

Acoustic Doppler velocimeters have been shown to 
accurately measure the intermediate scales of turbulence by 
numerous researchers. The present work examines their 
performance in measuring the velocity spectrum and second 
and third order structure functions, defined in Section 
I.B.Relevant to the present discussion, the reader is referred to 
references [3, 4, 5, 6].  

A. Measurements 
Since its development, the acoustic Doppler velocimeter 

(ADV) has been utilized to make turbulence measurements. 
Ref. [3] performed early experiments evaluating the accuracy 
of the first generation of acoustic velocimeters when measuring 
turbulence. By comparing to laser Doppler velocimeter 
measurements made in the same flow, they verified the ability 
of the ADV to accurately measure the mean flow and 
fluctuating velocities. 

This evaluation showed little bias in the measurement of 
mean velocities and co-variance terms such as the Reynolds 
stress. Higher bias is reported in variance terms such as the 
turbulence intensity. This difference in noise is a function of 
sensor geometry which also results in the horizontal velocity 
components having much higher noise than the vertical 
velocity. For the three-receiver system used in [3], the noise in 
the horizontal components are approximately thirty times 
higher than the vertical component. 

The ADV’s measurement of a turbulent velocity spectrum 
is also discussed in [3]. Agreement with the Kolmogorov 
scaling of the one-dimensional velocity spectrum is good. By 
applying a correction to the spectrum, better agreement 
between the model spectrum and the vertical velocity spectrum 
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is obtained. This correction estimates various sources of noise 
present in the measured velocities. 

With the expectation the acoustic Doppler velocimeter is 
capable of accurately measuring turbulence, our attention turns 
to estimating dissipation. 

B. Dissipation Calculation Methods 
Utilizing hot wire measurements made in a rough wall 

boundary layer, [2] present a comprehensive examination of 
local isotropy in turbulence at an extremely high Reynolds 
number (Reθ = 370000, θ is the momentum thickness). Several 
methods are used to estimate dissipation from the hotwire data. 
The first method utilizes the turbulent velocity spectrum 
(specifically each component’s one dimensional velocity 
spectrum) defined so that 

  (1) 

Where Eii is the normalized one dimensional velocity spectrum 
of component i, k1 is the wavenumber in the streamwise 
direction, and ūi

2 is the variance of the signal. There is no 
summation over i. Also note this integral is sometimes defined 
to equal 1/2 ūi

2, which will alter the value of the constants C1 
and C1´ defined below. One prediction of Kolmogorov’s 
Second Similarity Hypothesis is this spectrum takes a universal 
form in the inertial subrange 

  (2) 

C1 is a constant equal to 18/55 C, C1´ is 4/3 C1, and C is 
Kolmogorov’s constant with a value 1.5 +/- 0.1 [2]. The 
subscript on E in the second equation implies both component 
2 and component 3 meets this equivalence. This relationship is  
called Kolmogorov’s 5/3 law. 

A second form of the velocity spectrum useful for 
estimating dissipation is the dissipation spectrum 

  (3) 

In this relationship, ν is the kinematic viscosity. The subscript 
on E implies the relationship holds for either component 2 or 3, 
not summation. 

The second order structure function is defined as 

  (4) 

Where r is a separation distance in the streamwise direction. 
The third order structure function is defined 

  (5) 

There is no summation over i for the second or third order 
strucuture functions.  

Derived from Kolmogorov’s Second Similarity Hypothesis, 
Komogorov’s 2/3 law relates Dii to ε. 

  (6) 

Where C2 = 2.0 +/- 0.1 and C2´ = 4/3 C2 [2]. Like the 5/3 law, 
this allows measurements at intermediate scales to be used to 
estimate dissipation without the need to resolve the smallest 
scales of motion. 

The third order structure function satisfies a relationship 
known as the 4/5 Law  

  (7) 

The unique property of the 4/5 law is the constant is universal 
and exactly determined from the derivation of this law [1]. The 
other constants appearing in the 5/3 and 2/3 laws are only 
known approximately, within about 10% of the values used 
here. This gives the estimates of ε from the 4/5 law a slight 
advantage from a theoretical perspective. 

One final term needed when discussing dissipation is the 
Kolmogorov length scale, used when normalizing k and r to 
examine the agreement of measured spectra and structure 
functions with universal forms. It is defined using ε as 

   (8) 

For Eulerian measurements as produced by an ADV, 
Taylor’s Frozen Turbulence Hypothesis [2] is used to 
transform temporal data into spatial data, with r = Ut and k = 
2πf/U, where U is the mean convective velocity. 

C. Contribution of Doppler noise to the measured spectra 
and structure functions 
The ADV’s ability to measure turbulence is affected by the 

presence of Doppler noise (σ) having the following 
characteristics [3, 4, 5, 6] 

• It has a flat spectral response at all frequencies (white 
noise) 

• It is unbiased (σ̄  = 0). 

• Its skew is zero (σ3¯  = 0) 
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• It is statistically independent of the velocity 
fluctuations 

• It is statistically independent between independent 
receivers 

The directly measured beam velocities can be thought of as 
the sum of an unbiased mean velocity ( b̄ ), the turbulent 
fluctuating velocity (bi(t)), and a component due to Doppler 
noise (biD) 

  (9) 

Where bi(t) is the velocity measured by beam i. 

Working with (9) after removing the mean component, it 
can be shown any term involving the velocity variance, such as 
the turbulence intensities and energy spectrum, is biased by the 
mean squared value of the Doppler noise (σ2¯  ) times a scaling 
factor related to the probe’s geometry [5, 6]. It can also be 
shown in an ideal system, any quantity involving a co-variance 
is unbiased. In practical terms, no system is ideal and co-
variance between components, such as the Reynolds shear 
stresses will be biased, but significantly less than a variance 
like the normal stresses. 

By substituting (9) minus the mean component into (4) it 
can be shown the second order structure functions are biased by 
a term equal to 2σ2 times a geometric scaling factor. 

  (10) 

The tilde represents the true value of the structure function and 
b is a scaling factor determined from probe geometry. In an 
ideal system 

  (11) 

Where α is the bi-static angle. The equivalent geometric factor 
for the horizontal components is denoted by a and simply 
involves the sine squared of the bi-static angle [5]. 

By substituting (9) minus the mean component into (5) it 
can be shown the third order structure functions are unbiased 
by noise. Similar to the cospectrum, a co-structure function 
based on a velocity difference between components is noise 
free. 

Both [5] and [6] provide means of estimating the value of 
σ2 ¯ by utilizing redundant estimates of the velocities obtained 
from a four receiver system. These estimates allow correction 
of the velocity spectrum, intensities and other turbulent 
quantities involving the variance. The correction outlined in [5] 
will be utilized to correct velocity spectra as the method in [6] 
is not applicable to the instrument setup used. 

II. METHODS 
Experiments were carried out in the 8m Research Flume of 

the DeFrees Hydraulics Laboratory, part of the School of Civil 
and Environmental Engineering at Cornell University. The 
flume is a recirculating type driven by two centrifugal pumps 
operating in parallel. The flume has a cross section of 60 cm x 
60 cm and is typically operated with a still water depth of 30-
50 cm. A downstream weir forces super critical flow at the 
outlet, while a hexagonal grid at the inlet breaks up the flow 
and provides decaying grid turbulence in the main channel. A 
small diameter brass rod is glued at the inlet to trip the 
boundary layer turbulent. 

For the present experiments, the still water depth was 35 cm 
and a variety of free stream velocities were used. Discussion 
will focus on the highest velocity used, 40 cm/s, as it provides 
the highest Reynolds number. 

Measurements are made using a Nortek Vectrino 
velocimeter with the optional plus (+) firmware. Sample rate is 
set to 200 Hz for all datasets, with data taken at multiple 
elevations. To facilitate positioning the Vectrino, it was 
mounted on a computer controlled stage.  

The Nominal Velocity Range was set at the lowest value, in 
most instances 0.30 m/s,  which provided good data quality 
indicators and a clean velocity trace in the real time software. 
This setup should minimize Doppler noise in the 
measurements. Other than altering the Nominal Velocity 
Range, the instrument was left in its default setup with a 
sample volume height of 7 mm, transmit length of 1.8 mm, and 
a High power level for transmit pulses. The flow was seeded 
with Potters Industries Spherical until adequate SNR levels 
were attained (SNR > 15). 

Measurements were carried out for 5 minutes at each 
elevation, resulting in approximately 60,000 data points. The 
Vectrino reports three components of velocity, with redundant 
measurements of the vertical velocity labeled z1 and z2. The 
redundant vertical velocity information is used to calculate 
noise free cospectra and co-structure functions when 
appropriate. 

After collection and exporting to ASCII data files, the 
various quantities in Section I.B are calculated. No data quality 
screening was done on the measurements as the expectation is 
the averaging applied in most calculations is sufficient to 
minimize the influence of outliers. 

III. RESULTS 
At ≈40 cm/s free stream velocity, the momentum thickness 

Reynolds number is Reθ≈6000. This places it well below the 
values used by [2], but should be high enough the assumption 
of local isotropy is valid in this flow. At elevations away from 
the boundary, turbulence levels are 2–5% of the mean flow for 
all three components.  

Measurements within the bottom boundary layer were used 
to estimate u*=(ρ/τw)1/2, where τw is the bed stress and ρ is the 
fluid density, by fitting the smooth wall Law of the Wall [1] to 
the mean velocity profile.  
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For the remainder of this paper, measurements at an 
elevation of 8.0 cm will be utilized to demonstrate the results of 
each dissipation calculation method. This elevation is 
presumably outside the boundary layer with z+ = 1482, and 
dominated by the decaying grid turbulence from the inlet grid. 

Uncorrected, frequency based velocity spectra for all three 
components are shown in Fig. 1. When plotted in this manner, 
the inertial subrange should follow a -5/3 slope, plotted as a 
dashed line. The vertical velocity spectra follow a -5/3 slope at 
intermediate frequencies. The two horizontal component slopes 
do not match the predicted value due to higher noise levels. 

There are two spikes in the cross-stream component, one at 
30 Hz and one at 50 Hz. Because these spikes occur only in the 
cross-stream component and are fairly sharp, it is assumed to 
be a side-to-side vibration of the probe. A potential source of 
this vibration is from the two pumps transmitted through the 
flume structure, although it is unusual these spikes do not show 
up in the z2 velocity which is calculated from the same beam 
velocities. Despite these spikes, the cross-stream velocity 
behavior is not severely affected. 

Using the method outlined in [5], the noise spectrum N is 
estimated as 

  (12) 

Where b is the geometric scaling factor determined from probe 
geometry defined in (10). 

Corrected wavenumber spectra for the four measured 
velocities, along with the cospectrum Ez1z2(k1) and the 
estimated noise spectrum N(k1) scaled to correct the vertical 
components are shown in Fig. 2. The noise correction performs 
as desired, eliminating noise at high wavenumbers and 
correcting the two horizontal spectra at mid-wavenumbers so 
they follow the expected -5/3 slope. It should be noted this 

correction is the equivalent of the Weiner or Optimal filter and 
utilizes the data to develop a model for the noise. For spectral 
dissipation estimates, only the corrected spectra will be used. 

Compensated, normalized wavenumber spectra for the four 
velocities and the z1z2 cospectrum are shown in Fig. 3. 
Compensated spectra are defined as Eii(k) k5/3, and 
normalization occurs by dividing by ε-2/3. Dissipation estimates 
are determined by identifying the inertial subrange, which will 
appear as a flat region on the spectrum, on un-normalized 
compensated spectra. Once the inertial subrange is identified, 
the value of Eii(k) k5/3 is obtained for this region and used to 
estimate dissipation using the appropriate form of (2). 

Once compensated and normalized, the spectra should take 
on the value of C1 or C1´ in the inertial subrange. Because of 
the dissipation estimate’s dependence on these constants, the 

 
Figure 1. Uncorrected temporal spectra for each velocity component 
and the cospectrum for z1z2. Streamwise (•), cross-stream (x), z1 (+), z2 

(▲), z1z2 (★). The solid line is a -5/3 slope. 

 
Figure 2. Corrected wavenumber spectra for each velocity component 
and the cospectrum of z1z2. Streamwise (•), cross-stream (x), z1 (+), z2 

(▲), z1z2 (★). The solid line is a -5/3 slope, the dashed line is the 
estimated noise spectrum as defined in (12). 

 

 
Figure 3. Compensated, normalized wavenumber spectra for each 

velocity component and the cospectrum of z1z2. Streamwise (•), cross-
stream (x), z1 (+), z2 (▲), z1z2 (★). The solid line is has a value of C1 = 

0.491 or 4/3C1 depending on the component being plotted. 
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agreement in this normalization is excellent. 

Compensated, normalized dissipation spectra are shown in 
Figure 4. The streamwise and cross-stream spectra are 
extremely noisy and not expected to yield reliable results for 
the integrals in (3). 

The compensated, normalized third order structure 
functions, (-5/4)Diii/εr, are shown in Fig. 5. Kolmogorov’s 4/5 
law provides a direct estimate of dissipation when the third 
order structure function is un-normalized by ε. Each velocity 
component’s corresponding dissipation estimate is used to 
normalize its structure function, again making agreement with 
the expected form (i.e. a value of one in the inertial subrange) 
excellent. 

The compensated, normalized, corrected second order 
structure functions, (εr) -2/3Dii, are shown in Fig. 5. By 
integrating the appropriate noise spectrum an estimate of the 

variance due to noise is obtained. A correction to the structure 
functions is applied by subtracting the noise term in (9) from 
the calculated structure function. When un-normalized by 
dissipation, the compensated value can be used to estimate 
dissipation from (6). Because the dissipation value estimated 
from this method is used in the normalization, the agreement 
with expected values is again excellent. 

 A summary of the dissipation estimates produced by the 
various methods for each velocity component is shown in 
Table 1. 

TABLE I.  SUMMARY OF DISSIPATION ESTIMATES 

 
streamwise cross-

stream 
z1 z2 z1z2 

Method ε (m2/sec3) 
Integration 7.16x10-5 2.1x10-4 2.51x10-5 3.92x10-5 3.21x10-5 

5/3 Law 4.90x10-5 7.28x10-5 3.30x10-5 3.24x10-5 3.18x10-5 
2/3 Law 3.52x10-5 3.63x10-5 1.61x10-5 1.75x10-5 1.74x10-5 
4/5 Law 3.13x10-5 3.19x10-5 3.08x10-5 3.56x10-5 2.99x10-5 

IV. DISCUSSION 
Of the methods used to estimate dissipation, the estimates 

from Kolomogorov’s 4/5 Law are the most consistent across 
each component and provide the mean value closest to the 
estimate obtained from scaling. 

The estimates from Kolmogorov’s 5/3 Law are generally 
quite good for the three vertical spectra, but are much higher 
than the scaling estimate when obtained from the horizontal 
spectra. In particular, the cross-stream component provides an 
estimate over two times higher than the expected value. 

Behavior of the estimates obtained from integration of the 
dissipation spectra is similar in behavior. Here noise 
unaccounted for by the correction applied to the spectra plays a 
larger role. The streamwise and cross-stream components yield 
unreliable results for dissipation. When compared to the 
vertical spectra, the two horizontal spectra have only the 
vaguest resemblance to the expected form. The vertical 
dissipation spectra are only resolved to kη ≈ 0.8. By integrating 
the Pao universal spectrum [1], it can be shown this accounts 
for approximately 95% of the expected dissipation [7]. A 
correction has not been applied to these estimates. 

Estimates from Kolmogorov’s 2/3 Law are unusual. The 
estimates from the three vertical components are all 
approximately half of the streamwise and cross-stream values. 
Examining a plot of the second order structure functions 
reveals potential reasons for this behavior. 

The inertial subrange should show as a region with a 2/3 
slope. This region is apparent in the streamwise and cross-
stream components, neglecting the scatter in the cross-stream 
data due to the vibration identified in the spectral plots. The 
three vertical components show only a faint hint of the 2/3 
slope region in this dataset. This lack of a clearly identifiable 
inertial subrange renders the estimates obtained from the 2/3 
Law suspect other than for an order of magnitude estimate. 
Further analysis examining this discrepancy is of course 
warranted. 

 
Figure 5. Compensated, normalized third order structure functions for 
each velocity component and z1z2. Streamwise (•), cross-stream (x), z1 

(+), z2 (▲), z1z2 (★). 

 
Figure 4. Compensated, normalized dissipation spectra for each velocity 
component and the cospectrum of z1z2. Streamwise (•), cross-stream (x), 

z1 (+), z2 (▲), z1z2 (★). 
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The spectral and second order structure function estimates 
have one main disadvantage when utilized with data from an 
ADV. They suffer bias due to noise inherent in ADV 
measurements. If uncorrected, this bias increases the 
uncertainty in dissipation estimates beyond the 10% level 
associated with uncertainty in the constants. Noise 
contamination is a significant issue for horizontal spectra. 
Unless an order of magnitude estimate is needed, correction of 
the horizontal spectra must be carried out. 

As previously mentioned, the 4/5 Law provides the most 
reasonable and consistent results of any method utilized here. 
Given the constant involved is universal and exactly known 
and the unbiased estimate of it obtained from ADV data, it is 
the preferred method for estimating dissipation when an 

assumption of isotropy is reasonable. It should be noted 
behavior on the third order structure functions for the non-
streamwise components is not routinely published. Despite the 
excellent agreement seen here, when making estimates using 
the 4/5 Law, the streamwise component should be the primary 
component examined. 

In terms of calculation, there are tradoffs with each method. 
The spectral calculations are simple and quick to carry out 
when using the Fast Fourier Transform. Care must be taken to 
ensure spectra meet the normalizations specified in (1) and 
adjust the constants in (2) appropriately depending on what the 
normalization integral in (1) evaluates to. The structure 
functions are slower to calculate, but have an advantage over 
the spectral methods in that confidence intervals are trivial to 
calculate via the bootstrap, if potentially time consuming.  

V. CONCLUSIONS 
Four general methods were used to estimate dissipation 

from a velocity time series. They include direct integration of 
the dissipation spectrum, use of Kolmogrov’s 5/3 law to scale 
the one dimensional velocity spectra, and use of Kolmogorov’s 
2/3 and 4/5 laws to scale the second and third order structure 
functions. 

Because estimates of the third order structure function 
calculated from ADV velocity measurements are unbiased, it is 
the preferred method for estimating dissipation. 

The results of this experiment show the acoustic Doppler 
velocimeter can be used for estimating dissipation provided 
general measurement quality is satisfactory and the assumption 
of local isotropy is valid for the flow. 
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Figure 6. Compensated, normalized second order structure functions for 

each velocity component and z1z2. Streamwise (•), cross-stream (x), z1 
(+), z2 (▲), z1z2 (★). The dashed line represents C2 while the solid line is 

4/3 C2. 

 
Figure 7. Second order structure functions for each velocity component 

and z1z2. Streamwise (•), cross-stream (x), z1 (+), z2 (▲), z1z2 (★). The 
solid line is a 2/3 slope. 
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