
1

VECTRINO PROFILER
INTEGRATOR MANUAL

January 2015

2

Copyright © Nortek Scientific Acoustics Development Group Inc. 2012-2015. All rights

reserved.

This document may not – in whole or in part – be copied, photocopied, translated, converted

or reduced to any electronic medium or machine-readable form without prior consent in

writing from Nortek AS. Every effort has been made to ensure the accuracy of this manual.

However, Nortek AS makes no warranties with respect to this documentation and disclaims

any implied warranties of merchantability and fitness for a particular purpose. Nortek AS

shall not be liable for any errors or for incidental or consequential damages in connection

with the furnishing, performance or use of this manual or the examples herein. Nortek AS

reserves the right to amend any of the information given in this manual in order to take

account of new developments.

Microsoft, ActiveX, Windows, Windows 2000, and Win32 are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries. Other

product names, logos, designs, titles, words or phrases mentioned within this publication

may be trademarks, service marks, or trade names of Nortek AS or other entities and may be

registered in certain jurisdictions including internationally.

Nortek AS, Vangkroken 2, NO-1351 RUD, Norway.

Tel: +47 6717 4500 • Fax: +47 6713 6770 • e-mail: inquiry@nortek.no • www.nortek-

as.com

Date Change Notes Authour

August 2012 Initial Release Robert Craig

October 2012 Added « velocityExponent » to User Configuration
structure (0.1 mm/s or 1mm/s resolution).

Robert Craig

February 2014 -Added units information to ping interval parameters
-Vectrino II changed to Vectrino Profiler.
-Status information is now passed in the command
header during measurement mode.

Robert Craig

July 2014 Updated sample code.
The velocity data stucture may contain a pad byte to
make the overall structure size an even number.
Added section on how to use the binary
configuration file created by MIDAS.

Robert Craig

Sept 2014 Section on how to use the vProToNTK utility added. Robert Craig

January 2015 Probe calibration description added Robert Craig

http://www.nortek-as.com/
http://www.nortek-as.com/

3

CONTENTS

1 Introduction .. 5

2 Basic Interface Concepts.. 7

2.1 Operational modes .. 7

2.2 The Break .. 7

2.3 Checksum Control ... 8

2.4 Protocol Header with Two-character ASCII Commands .. 8

2.5 Acknowledgement ... 8

3 Use with a Controller ... 9

3.1 Simple Storage Device ... 9

3.2 Control the Instrument directly .. 9

3.3 Control via the Serial Line .. 10

4 Remote Control Commands .. 11

4.1 Command Mode .. 13

4.2 In Measurement Mode ... 18

4.3 Configuration .. 18

4.3.1 Doppler User Configuration .. 19

4.3.2 Bottom Check Configuration... 19

4.3.3 Adaptive Ping Interval Configuration .. 20

4.3.4 Using a Configuration Command File ... 20

5 Firmware Data Structures .. 21

5.1 Command Mode Structures ... 21

5.2 Measurement Mode Structures .. 27

6 Use with other instruments ... 33

6.1 Synchronizing with Other Instruments ... 33

6.1.1 Vector ... 33

6.1.2 Vectrino .. 38

4

7 Conversion Utility .. 41

8 Sample Code ... 41

8.1 Serial Port Definition .. 42

8.2 Interacting with the Instrument and Decoding Data Structures 43

8.3 Structure Definitions .. 54

5

1 INTRODUCTION

This document provides the information needed to control the Vectrino

Profiler with user supplied software. It is aimed at system integrators

and engineers with interfacing experience. Code examples are

provided in C. The document’s scope is limited to interfacing and does

not address general performance issues of the instruments. For a more

thorough understanding of the principle of operation, we recommend

the user guide that accompanies the individual instruments.

The document is complete in the sense that it describes all available

commands and modes of communication. For most users, it will make

sense to let the supplied Nortek software do most of the hardware

configuration and then let the controller limit its task to

starting/stopping data collection. For more in-depth information about

specific commands, we urge you to contact Nortek to discuss how your

particular problem is best solved.

Note that the Nortek products use a binary data format for

communication. This makes it hard to “see” what is going on with a

terminal emulator. However, the binary interface saves programming

time because parsing of text data isn’t needed. It may take more time

initially to put the basic communication in place, but once done the

remainder of the work should be straightforward. The use of

checksums and CRC helps to make the binary data interface more

robust.

As always, these types of documents are subject to change. We

recommend that you check http://www.nortek-as.com/en/support or

contact Nortek to ensure you have the all the latest information and

versions of any software you plan to use.

We recommend you do this as part of your project planning before you

start any development work. If you have any comments or suggestions

on the information given here, please let us know. Your comments are

always appreciated; our general e-mail address is inquiry@nortek.no.

http://www.nortek-as.com/en/support
mailto:inquiry@nortek.no

6

You can always join our forum and post your comments, suggestions

or questions there, visit our website www.nortek-as.com and click the

link to the forum.

http://www.nortek-as.com/

7

2 BASIC INTERFACE CONCEPTS

The Nortek products communicate using serial ports with a default

protocol of 8 data bits, no parity and 1 stop bit. The baud rate is user

selectable and can be configured either with the supplied Windows

programs or by using direct commands to the system after the direct

communication has been initiated (see the chapter on Remote Control

Terminal Commands). The only lines used are RxD, TxD, and GND.

Status and handshaking lines are not used.

2.1 OPERATIONAL MODES

The operational modes for the Vectrino Profiler are:

 Command mode. The system is waiting for commands to be

sent over the serial line.

 Measurement mode. The system cycles through a series of

states when collecting data. To exit measurement mode, a break

and confirmation string must be sent.

2.2 THE BREAK

A break command is used to change between the various operational

modes of the instrument and to interrupt the instrument regardless of

which mode it is in. It is used frequently when communicating with the

instrument.

To send a break you first send “@@@@@@” followed by a delay of 10

ms and then send “K1W%!Q”. The “MC” command (embedded in a full

command header) must follow the break on the Vectrino Profiler to

receive a response (see section 4.2).

8

2.3 CHECKSUM CONTROL

Most data structures contain a 16-bit checksum. An example program

is given in the chapter on Data Structures to help explain how the

checksum is calculated.

2.4 PROTOCOL HEADER WITH TWO-CHARACTER ASCII

COMMANDS

The command interface uses two character commands where the two

characters are treated as a single 16-bit word. These commands are

embedded in a protocol header described below. The protocol header

must be sent as one unit within 1 second; otherwise all characters will

be discarded.

Data transfer is carried out using the “little Endian” convention, which

means that the low byte is sent before the high byte. The data types

are given in the section describing the various commands. More about

this can be found in the Commands chapter.

2.5 ACKNOWLEDGEMENT

After a successful command is sent, the system returns an

acknowledgement embedded within a protocol header. The value for

acknowledge (AckAck) is 0x0606. Whenever the firmware receives a

command/word that is invalid, it immediately returns a negative

acknowledge (NackNack). The value is 0x1515. With the Vectrino

Profiler, this is usually followed with an error string indicating the

reason for the failure.

9

3 USE WITH A CONTROLLER

This chapter provides useful information when setting up your Nortek

instrument with a controller. Basically, a controller will act in one of the

two following ways:

 As a simple storage unit for the data acquired.

 As a device controlling the Nortek instrument’s behavior, with or

without data transfer to the controller.

All Nortek instruments come with software running on the Windows®

platform. We strongly recommend that you use this software to set up

the instrument properly.

The data output to the controller is in binary format. The Vectrino

Profiler uses a high speed RS-422 interface for data transfer. This

interface allows transfer rates of up to 1.25MBaud between the

controller and instrument.

3.1 SIMPLE STORAGE DEVICE

Data output from the Vectrino Profiler instrument is time stamped with

relative to the start of data collection. In order to synchronize

instrument time with the real time of day, the controller must store the

time of day that the first data record is received. Comparing the time

of day with the instrument time gives the offset that must be applied

to the instrument time to convert it into time of day. Note that there is

currently no software available from Nortek that allows raw data files

from the Vectrino Profiler to be read. It is up to the user to interpret

the file contents.

See the chapter on Data Structures for more information on how to

interpret the data received from the instrument.

3.2 CONTROL THE INSTRUMENT DIRECTLY

Direct control involves having the controller start and stop the

measurements using a combination of a two character ASCII command

(embedded in a protocol header) and a break command.

10

For commands to be received and executed, the instrument must be in

Command mode. If the instrument is in Measurement Mode a break

followed by the MC command must be sent. The MC command must be

sent within 1 second of the break. The Vectrino Profiler continues

measuring until the break / MC command is received.

3.3 CONTROL VIA THE SERIAL LINE

To start a measurement from Command mode, send the command ST

in a protocol header. The system will send an acknowledge header to

show that the measurement is started. More about this can be found in

the Terminal Commands chapter.

A typical sequence proceeds as follows:

 Send a break command to gain control of the system and put it

in Command mode. If the system is busy collecting data (i.e.

measuring), a verification is required, otherwise the instrument

will not stop measuring. Send the command MC (in a protocol

header) within 60 seconds.

 To start a measurement from command mode, send the

command ST in the protocol header.

 To stop data collection, send a break string followed by the

verification command MC in a protocol header.

11

4 REMOTE CONTROL COMMANDS

Note that it is not possible to control the Vectrino Profiler through a

terminal emulator. All commands sent to and received from the

Vectrino Profiler are binary in nature and, as such, contain non-

printable characters. All communications must be carried out using a

controller running appropriate interpretation software.

All commands in the Vectrino Profiler are incorporated into a format

that use a data header followed by a data section protocol. The data

header contains information about the command and the amount of

parameter data following the header. The same header is used when

reading data from the instrument to identify the type and amount of

data in the data section.

To send a command, create a header with the sync byte set to 0xA5,

the refer byte set to 0, the ID set to the command ID (as described

below) and fill in the dataSize parameter with the size of any command

parameters to follow (often 0). Then calculate the checksum for these

6 bytes and store it in the checksum word. Send the header followed

by any associated data.

The instrument will respond with a header containing ID 0x0606

(ACKACK) on success and a value indicating the amount of response

data (if applicable) in dataSize. On failure, a header containing an ID

0x1515 (NACKNACK) will be sent and the data following will usually be

an error string describing the reason for the failure (with the length of

the error string in dataSize).

A few terms:

MSW: Most Significant Word, bits 31–16 in a 32 bits data field

LSW: Least Significant Word, bits 15–0 in a 32 bits data field

SW: The software program running on the computer or controller

12

FW: The software program running on the instrument

0x: Indicates hexadecimal representation

Low byte before high byte. When designing computers, there are two

different architectures for handling memory storage. They are often

called Big Endian and Little Endian and refer to the order in which the

bytes are stored in memory. The Windows series of operating systems

has been designed around Little Endian architecture and is not

compatible with Big Endian.

These two phrases are derived from “Big End In” and “Little End In.”

They refer to the way in which memory is stored. On an Intel computer,

the little end is stored first. This means a Hex word like 0x1234 is

stored in memory as (0x34 0x12). The little end, or lower end, is

stored first. The same is true for a four-byte value; for example,

0x12345678 would be stored as (0x78 0x56 0x34 0x12). For this

reason we show the Hex values in reversed order in the tables below.

Example: For the RC command the character ‘R’ corresponds to 0x52

and the character ‘C’ to 0x43. Shown in reversed order (to comply with

the Little Endian principle) this will read 0x4352, which is what you will

find listed in the table: Remote Control Commands in Command Mode.

13

4.1 COMMAND MODE

Protocol Header

Size Name Offset Description

1 Sync 0 0xA5 (hex)

1 Status /

Refer

1 Bits 0 – 3: The lower 4 bits are

reserved for internal use.

In measurement mode, the upper

four bits contain status

information.

Bit 4 – The instrument is buffering

and the internal memory is almost

full.

Bit 5 – The instrument is currently

buffering data (baud rate too low to

support real-time data transfer).

Bit 6 – The instrument has run out

of internal memory and has

stopped collecting data. Data

transmission of the buffered data

will continue until the internal

buffer has been emptied.

Bit 7 – Internal processing error

detected. Retrieve the system log

from the instrument when making a

support request.

2 ID 2 Command or Data Record Type

2 dataSize 4 Amount of data in data block

2 Checksum 6 Word-wise checksum of this header

Total Size 8 Bytes

Set baud rate

Execute command

BR

Hex

5242

Description

Sets the instrument baud rate.

Response

Protocol header with ID=0606 dataSize = 0

Parameter to be sent

Z

dataSize = 4

Parameter structure

14

z = 4 byte binary baud rate

Supported baud rates are

9600

19200

38400

57600

115384

234375

460800

937500

1250000

Example

A5 00 52 42 04 00 87 F8 1C 4E 0E 00

Command for setting baud rate to 937500

(0x000E4E1C) baud

followed by the response A5 00 06 06 00 00 37 BC

Reference

Note

The baud rate is stored in the instrument only when an

SB command is sent. This will ensure that the

communication can be restored by powering down the

instrument. The PC must make sure that the baud rate

being used is sufficiently high to ensure that all data

can be transferred over the serial line for the chosen

configuration and sample rate or internal buffering of

the data stream will occur in the instrument.

Save baud rate

Execute command

SB

Hex

4253

Description

Saves the currently set baud rate

Response

Protocol header with ID=0606 dataSize = 0

Parameter to be sent

None

Example

A5 00 42 53 04 00 73 09

15

followed by the response A5 00 06 06 00 00 37 BC

Reference

Note

The baud rate is stored in the instrument only when an

SB command is sent. This will ensure that the

communication can be restored by powering down the

instrument. The PC must make sure that the baud rate

being used is sufficiently high to ensure that all data

can be transferred over the serial line for the chosen

configuration and sample rate or internal buffering of

the data stream will occur in the instrument.

Sets user configuration data

Execute command

CC

Hex

4343

Description

Set the current user configuration from the instrument.

It is recommended that, before altering any

configuration elements, the configuration structure be

read with the GC command first. Given that the

firmware will alter the configuration sent to match

internal capabilities, it is also recommended that the

instrument configuration be read directly after being

set to get the actual values used.

Response

Protocol header with ID=0606 dataSize=0 on success

or ID=1515 dataSize=length of error string followed by

the error string on failure

Parameter

None

Example

A5 00 43 43 B8 00 2C FA

B8 00 04 02 00 00 04 01 00 03 04 34 00 00 00 00

00 80 BB 44 00 00 C8 42 10 27 00 00 00 00 00 00

64 00 00 00 0A 00 00 00 00 00 00 00 35 00 96 00

1C 00 0A 00 24 00 90 01 00 00 84 3F 00 00 20 42

…

Response

A5 00 06 06 00 00 37 BC

Reference

Chapter on

Data Structures

Note

Some lines in the above example have been removed

for clarity.

16

Read user configuration data

Execute command

GC

Hex

4347

Description

Read the current user configuration from the

instrument.

Response

Protocol header with ID=0606 dataSize=184 followed

by User configuration (184 bytes)

Parameter

None

Example

A5 00 43 47 00 00 74 FD

Response

A5 00 06 06 B8 00 EF BC

B8 00 04 02 00 00 04 01 00 03 04 34 00 00 00 00

00 80 BB 44 00 00 C8 42 10 27 00 00 00 00 00 00

64 00 00 00 0A 00 00 00 00 00 00 00 35 00 96 00

1C 00 0A 00 24 00 90 01 00 00 84 3F 00 00 20 42

00 00 B8 0B C1 0F 20 05 1E 00 90 01 EE 02 00 00

00 00 00 00 00 00 00 00 00 00 00 00 2C 00 02 01

01 00 00 00 00 00 20 41 32 00 78 00 46 00 0A 00

00 00 84 3F 00 00 48 42 00 60 F4 42 28 00 00 00

…

Reference

Chapter on

Data Structures

Note

Some lines in the above example have been removed

for clarity.

Read hardware configuration data

Execute command

GP

Hex

5047

Description

Read the currently used hardware configuration from

the instrument.

Response

Header with ID=0606 dataSize=104 followed by

hardware configuration (104 bytes)

Parameter

None

Reference

Chapter on

Data Structures

Note

17

Read head configuration data

Execute command

GH

Hex

4847

Description

Read the currently used head configuration from the

instrument

Response

Header with ID=0606 dataSize=224 followed by head

configuration (224 bytes)

Parameter

None

Reference

Chapter on

Data Structures

Note

Get identification string

Execute command

ID

Hex

4449

Description

Read the identification string from the instrument.

Response

Header with ID = 0606, dataSize = ID Length followed

by an ASCII string

Parameter

None

Response example

A5 00 06 06 0C 00 43 BC

56 45 43 54 49 49 2D 50 72 6F 66 69 65

corresponding to VECTII-Profi

18

Start measurement

Execute command

ST

Hex

5453

Description

Immediately starts a measurement using the current

configuration of the instrument.

Response

Header with ID = 0606, dataSize = 0

Parameter

None

Reference Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started

NackNack is returned. The reason for failing to start is

usually that the instrument configuration is invalid.

4.2 IN MEASUREMENT MODE

Enter command mode

Execute command

MC

Hex

434d

Description

Preceded by a break command, this command is sent

to force the instrument to exit Measurement mode and

enter Command mode.

Response

Header with ID = 0606, dataSize = 0

Parameter

None

Reference Note

The MC command must be sent within 10 seconds of

the break being sent. Otherwise the measurement will

continue. Within 2 seconds of AckAck being sent, the

instrument will enter Command mode

4.3 CONFIGURATION

The configuration structure is described in Section 5.1. There are three

sections to the configuration: Doppler configuration, bottom check

configuration, adaptive ping interval configuration.

19

4.3.1 DOPPLER USER CONFIGURATION

The main configuration structure is used for configuring the velocity

sampling. It contains both elements that are set by the user and elements

that are returned by the instrument. Most of the settings are explained in the

description of the configuration structure. Note that all pad / unused bytes

must be set to 0 for compatibility reasons.

The version number returned during a “get configuration” operation should

always be checked to ensure that it matches the expected version of your

controller. This will allow new firmware to be recognized and accommodated

for as required.

In terms of profile range, the user sets the cellSize, nCells and cellStart

parameters and the instrument returns the actual cell size and cell start in

cellSizeSelected and cellStartSelected. The speedOfSound variable is set by the

user when calcSpeedOfSound is 0 and calculated and returned if 1.

nTranducers is always returned as 4 and nFrequencies is always returned as 1.

pingInterval / extendedPingInterval and ensemblePingPairs are calculated and

returned based upon the value the calcPingInterval.

horizontalVelocityRange and verticalVelocityRange are calculated and returned

based upon the calculated ping intervals and user setting for velocityRange.

rawSampleSeparation should be set to 0 (continuous pings) to provide the

best data collection. In “unwrap” extended velocity mode, this value is

calculated. (Don’t forget to reset the value back to 0 if you swap between

unwrap mode and dual PRF mode.)

Bottom check and dynamic ping interval selection use the embedded bottom

and beam sub-structures.

4.3.2 BOTTOM CHECK CONFIGURATION

Bottom check is enabled by setting config.bottom.enable to 1. The additional

variables within the sub structure are explain in section 5.1. The

cellSizeSelected, minRangeSelected, and maxRangeSelection values are the

calculated values actually used by the instrument that are closest to those set

by the user in cellSize, minRange, and maxRange. Note that the bottom check

sample rate can be at most 1/3 of the velocity sample rate (to a maximum of

10Hz).

20

4.3.3 ADAPTIVE PING INTERVAL CONFIGURATION

Adaptive ping interval calculations use the embedded beam sub-structure.

To enable adaptive ping interval calculations, set config.calcPingInterval to 3

set config.beam.enable to 1. For “Adaptive once” set config.beam.sampleRate

to 0. For dynamic adaptive and bottom check, set beam.sampleRate to some

value that is much less than bottom.sampleRate.

The software application uses the following settings:

 config.beam.enable = 1;
 config.beam.cellSize = 40;
 config.beam.minRange = 30;
 config.beam.maxRange = 1000;
 config.beam.gainReductiondB = 0;

4.3.4 USING A CONFIGURATION COMMAND FILE

MIDAS (the Nortek software used to operate the Vectrino Profiler) contains a

feature that allows the user to create a binary configuration command file that

can be sent directly to the instrument. The command file contains both the

protocol header and user configuration structure. To use the file, the user

supplied software must first connect to the instrument. A code snippet

showing how to read and send the file is included (full source for how to

connect to the instrument and for the port.write and readBlock commands are

included in Chapter 7).

pBinaryFile = fopen(binaryFileName, "rb");
if (binaryFileName == NULL) {
 printf("Configuration file %s could not be opened.", binaryFileName);
 endit();
}

char cfg[256];

/* Get file size */
fseek(pBinaryFile, 0L, SEEK_END);
unsigned int fsize = ftell(pBinaryFile);
fseek(pBinaryFile, 0L, SEEK_SET);

if (fsize != fread(cfg, 1, fsize, pBinaryFile)) {

printf("File read failed");
endit();

}

fclose(pBinaryFile);
port.write(cfg, fsize);
rx_length = BUFF_SIZE;

if (readBlock(serBuff, &rx_length, 1) == VECTRINOPROFILER_ID_SUCCESS) {
 printf("Configuration accepted.\n\n");
} else {
 printf("Configuration Error: %s\n\n", serBuff);
}

21

5 FIRMWARE DATA STRUCTURES

This section describes the data structures that are used for the Vectrino

Profiler. All structures are prefixed with the protocol header.

5.1 COMMAND MODE STRUCTURES

Protocol Header

Size Name Offset Description

1 Sync 0 0xA5 (hex)

1 Refer 1 Bits 0 – 3: The lower 4 bits are

reserved for internal use.

In measurement mode, the upper

four bits contain status

information.

Bit 4 – The instrument is buffering

and the internal memory is almost

full.

Bit 5 – The instrument is currently

buffering data (baud rate too low to

support real-time data transfer).

Bit 6 – The instrument has run out

of internal memory and has

stopped collecting data. Data

transmission of the buffered data

will continue until the internal

buffer has been emptied.

Bit 7 – Internal processing error

detected. Retrieve the system log

from the instrument when making a

support request.

2 ID 2 Command or Data Record Type

2 dataSize 4 Amount of data in data block

2 checksum 6 Word-wise checksum of this header

Total Size 8 Bytes

Hardware Configuration

22

Retrieved using the “GP” command

Size Name Offset Description

14 SerialNo 0 instrument type and serial number

2 Config 14 board configuration:

bit 0: Recorder installed (0=no, 1=yes)

bit 1: Compass installed (0=no, 1=yes)

2 Frequency 16 board frequency [kHz]

2 PICversion 18 FPGA version number

2 HWrevision 20 Hardware revision

2 RecSize 22 Recorder size (*65536 bytes)

14 Spare 24 Unused

16 FW Version 38 DSP firmware version

16 FWRepoVer

sion

54 DSP Firmware build version

32 FWdate 70 Date that firmware was built

2 Checksum 102 = b58c(hex) + sum of all words in

structure

Total Size 104 Bytes

Head Configuration

Retrieved using “GH” command

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 04 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

2 Config 4 head configuration:

bit 0: Pressure sensor (0=no, 1=yes)

bit 1: Magnetometer sensor (0=no, 1=yes)

bit 2: Tilt sensor (0=no, 1=yes)

bit 3: Tilt sensor mounting (0=up, 1=down)

2 Frequency 6 head frequency (kHz)

2 Type 8 head type

12 SerialNo 10 head serial number

176 System 22 system data

22 Spare 198 spare

2 NBeams 220 number of beams

2 Checksum 222 = b58c(hex) + sum of all bytes in structure

23

Total Size 224 Bytes

Bottom Check Configuration

The bottom check configuration is embedded in the User Configuration

structure (following)

Size Name Offset Description

2 size 0 Size of this data structure (in bytes: 44)

1 version 2 Structure version (3)

1 supported 3 1 if license supports bottom check

1 Enable 4 1 = enable, 0 = disable

1 rangeCompAmp 5 Compensate for range dependent

attenuation (1). No compensation (0).

2 ProbeCheck 6 Enables / Disables probe check operation.

Only relevant in the beamCheck structure

(see below).

4 sampleRate 8 Sample rate (float: Hertz)

2 minRange 12 Requested minimum profiling range (mm)

2 maxRange 14 Requested maximum profiling range (mm)

2 nCells 16 Number of cells in profile

2 cellSize 18 Requested cell size (0.1mm)

4 cellSizeSelected 20 Actual cell size (float: in mm)

4 minRangeSelected 24 Actual minimum profiling range (Float:

mm)

4 maxRangeSelected 28 Actual maximum profiling range (Float:

mm)

2 gainReductiondB 32 Amount of gain reduction (dB)

10 pad 34 Unused

User Configuration

Set with the “CC” command. Retrieved with the “GC” command.

Size Name Offset Description

2 size 0 Size of this data structure (in

bytes:184)

1 version 2 Structure version (6)

1 CoordSystem 3 coordinate system (1=XYZ,

2=BEAM)

1 calcSpeedOfSound 4 Speed of sound (0=user,

24

1=calculated internally)

1 syncType 5 0=None 1=On start 2=On

measure 3=Master (Vectrino)

4=Master (Other)

1 nTransducers 6 Number of receive transducers

(always 4)

1 nFrequencies 7 Number of Tx frequencies (always

1)

1 calcSampleRate 8 Must be set to 0 (Maximize

ensemble count)

1 calcPingInterval 9 Ping interval algorithm

1 – Minimum ping interval to

achieve range + dual PRF extended

range

2 – Maximum ping interval to

achieve ambiguity velocity + dual

PRF extended range

3 – Adaptive ping interval + dual

PRF extended range

1 powerLevel 10 1:Low Minus 2:Low 3:High Minus

4:High

1 internalMemory 11 Amount of internal memory

available for buffering (in MB)

4 pad1 12 Pad bytes (4)

4 speedOfSound 16 Speed of sound (Float: in m/s)

4 sampleRate 20 Sample rate (Float: in Hertz)

12 Internal Use 24 not used

2 Pulse Length 36 Tx pulse length (in units of

0.1mm)

8 Internal Use 38 Not used

2 pingInterval 46 Interval between pings (us)

(calculated)

2 ensemblePingPairs 48 Number of ping pairs in an

ensemble (calculated)

2 cellSize 50 Requested cell size (0.1mm)

2 nCells 52 Number of cells in a profile

2 cellStart 54 Range to first cell (0.1mm)

4 cellSizeSelected 56 Cell size actually used (float: mm)

4 cellStartSelected 60 Range to first cell actually used

(float: mm)

2 Salinity 64 Salinity in 0.1ppt

25

2 velocityRange 66 Ambiguity velocity (in mm/s)

2 horizontalVelocityRange 68 Horizontal velocity range in XYZ

coordinates (calculated in mm/s)

2 verticalVelocityRange 70 Calculated vertical velocity range

in ZYA coordinates (calculated in

mm/s)

2 extendedPingInterval 72 Extended Velocity Range effective

ping interval in us calculated: 0 is

disabled). Actual ping intervals

produced are dependent upon the

selected extended range mode.

2 minCalibratedRange 74 Minimum supported XYZ

calibration range (0.1mm)

2 maxCalibratedRange 76 Maximum supported XYZ

calibration range (0.1mm)

2 rawSampleSeparation 78 Separation time between samples

within an ensemble (first ping to

first ping in us). Should be set to

0 (continuous pings). In unwrap

extended range mode this is

calculated (first coarse ping to first

coarse ping in us).

2 Internal use 80 Must be 0

2 Reserved 82 Future use

2 Reserved 84 Future use

2 velocityExponent 86 Exponent of scale of raw velocity

measurement

(-3 = mm/s, -4 = 0.1m/s)

4 Pad3 88 Spare

44 bottomCheck 92 Bottom Check Configuration (see

above)

44 beamCheck 136 Beam Check Configuration (see

above)

2 Pad4 180 Unused

2 Checksum 182 =b58c (hex) + sum of all words in

structure

Total Size 184 Bytes

Probe Profile Calibration

The profile calibration consists of a series of 4x4 matrices used to convert

from the beam co-ordinate data into XYZ co-ordinates (this is done

26

automatically within the instrument when XYZ co-ordinates are selected in the

configuration). The profile calibration is retrieved with the “GR” command. It

consists of a header section followed by a cell structure for each cell in the

profile.

To create the 4x4 transformation matrix for each cell in the profile, divide

each element by the header scaleFactor to produce a floating point number.

To convert from beam co-ordinates to XYZ co-ordinates for a particular cell,

perform the following matrix operation:

 |

𝑀1 𝑀2 𝑀3 𝑀4
𝑀5 𝑀6 𝑀7 𝑀8
𝑀9 𝑀10 𝑀11 𝑀12

𝑀13 𝑀14 𝑀15 𝑀16

| 𝑥 |

𝑉 𝐵𝑒𝑎𝑚 1
𝑉 𝐵𝑒𝑎𝑚 2
𝑉 𝐵𝑒𝑎𝑚 3
𝑉 𝐵𝑒𝑎𝑚 4

| = |𝑉𝑥 𝑉𝑦 𝑉𝑧1 𝑉𝑧2|

Size Name Offset Description

2 hdrChecksum 0 =b58c (hex) + sum of all words in

structure (starting with the size)

2 Size 2 Size of this data structure (in

bytes:72)

1 version 4 Structure version (1)

3 Reserved 5 Reserved

4 startRange 8 Start of calibrated range (0.1mm)

4 endRange 12 End of calibrated range (0.1mm)

4 cellSize 16 Length of each cell (0.1mm)

4 nCells 20 Number of cells in the profile

2 scaleFactor 24 Scaling factor to apply to matrix

elements (matrix value = matrix

element / scaleFactor)

2 cellsChecksum 26 =b58c (hex) + sum of all words in

the cell structures

2 cellElemSize 28 Size of each cell structure

12 serialNo 30 Probe serial number (ASCII)

30 Reserved 42 Reserved

40 *

nCells

Cell matrices 72 Data block containing a cell

structure for each cell

27

Size Name Offset Description

2 Size 0 Size of the cell data structure (in

bytes:40)

2 startRange 2 Start range for this cell (0.1mm)

2 cellSize 4 Cell size (0.1mm)

2 Reserved 6 Start of calibrated range (0.1mm)

16 * 2 Matrix element 8 Matrix element (scaled by the

header scaleFactor).

5.2 MEASUREMENT MODE STRUCTURES

When in measurement mode, the Vectrino Profiler will output data records.

Each data record is prefaced by a protocol header containing the data ID (type)

for that record. The following types may be produced (depending upon

configuration and licensing):

00 50 Velocity Data Header

00 51 Velocity Data

00 61 Bottom Check Data

00 62 Beam Check Data

In addition to data records, the Vectrino Profiler also issues “information

headers” describing two operating conditions within the instrument

01 00 Collection Stopped

01 01 Internal Memory Buffer Full

The Collection Stopped ID will be issued if an error condition occurs during

data collection. This will be followed by an error string which can be read to

determine the cause of the error.

The Internal Memory Buffer Full ID will be issued if the instrument is buffering

data and the internal memory becomes full. Data collection will be stopped at

this point since no further memory is available.

Velocity Data Header

Data ID = 0x0050

28

Size Name Offset Description

2 checksum 0 =b58c(hex) + sum of all
words in structure

1 status 2 Bits 0,1,2= number of

beams

Bit 3 = Internal memory

approaching full

Bit 4 = Processing

error: Data possibly

dropped

Bit 5 = Internal

buffering is occurring

1 headerOnly 3 0 if noise profile data is

included, 1 if only the

header is included

4 timeStamp 4 Time stamp (relative to

start of collection in

100us)

2 nCells 8 Number of cells in the

profile

2 pingInterval1 10 First ping interval in us

2 pingInterval2 12 Second ping interval in

us (equal to first if

dualPRF is disabled)

2 horizontalVelocityRange 14 Horizontal velocity

range in XYZ

coordinates (mm/s)

2 verticalVelocityRange 16 Vertical velocity range

in XYZ coordinates

(mm/s)

2 temperature 18 Temperature (0.01

Celsius)

2 soundSpeed 20 Speed of sound

(0.1m/s)

2 adaptiveStatus 22 0 = OK 2 = failed

2*nCells NoiseAmplitude Profile

Beam 1

24 Noise amplitude beam

1 (linear counts)

2*nCells NoiseAmplitude Profile

Beam 2

24+2*nCells Noise amplitude beam

2 (linear counts)

2*nCells NoiseAmplitude Profile

Beam 3

24+4*nCells Noise amplitude beam

3 (linear counts)

2*nCells NoiseAmplitude Profile

Beam 4

24+6*nCells Noise amplitude beam

4 (linear counts)

nCells NoiseCorrelation Profile 24+8*nCells Noise Correlation Beam

29

Beam 1 1 (0-255 = 0-100%)

nCells NoiseCorrelation Profile

Beam 2

24+9*nCells Noise Correlation Beam

2 (0-255 = 0-100%)

nCells NoiseCorrelation Profile

Beam 3

24+10*nCells Noise Correlation Beam

3 (0-255 = 0-100%)

nCells NoiseCorrelation Profile

Beam 4

24+11*nCells Noise Correlation Beam

4 (0-255 = 0-100%)

Total Size 24 + 12*nCells Bytes

Velocity Data

Data ID = 0x0051

Size Name Offset Description

2 checksum 0 =b58c(hex) + sum of all words in
structure

1 Status 2 Bits 0,1,2= number of beams

Bit 4 = Internal memory

approaching full

Bit 5 = Processing error: Data

possibly dropped

Bit 6 = Internal buffering is

occurring

1 exponent 3 Velocity exponent (-3 = mm/s,

-4 = 0.1 mm/s)

4 timeStamp 4 Time stamp (relative to start of

collection in 100us)

2 nCells 8 Number of cells in the profile

2 temperature 10 0.01 Celsius

2 soundSpeed 12 Speed of sound (in 0.1m/s)

2 pingPairs 14 Number of ping pairs in the

ensemble

2*nCells Velocity

profile B1/X

16 velocity beam1 or X (mm/s or

0.1mm/s: See configuration

velocityExponent)

2*nCells Velocity

profile B2/Y

16+2*nCells velocity beam2 or Y (mm/s or

0.1mm/s: See configuration

velocityExponent)

2*nCells Velocity

profile B3/Z1

16+4*nCells velocity beam3 or Z1 (mm/s or

0.1mm/s: See configuration

velocityExponent)

2*nCells Velocity

profile B4/Z2

16+6*nCells velocity beam4 or Z (mm/s or

0.1mm/s: See configuration

30

velocityExponent)

2*nCells Amp B1 16+8*nCells amplitude beam1 (counts)

2*nCells Amp B2 16+10*nCells amplitude beam2 (counts)

2*nCells Amp B3 16+12*nCells amplitude beam3 (counts)

2*nCells Amp B4 16+14*nCells amplitude beam4 (counts)

nCells Corr B1 16+16*nCells correlation beam1 (0-255 = 0-

100%)

nCells Corr B2 16+17*nCells correlation beam2 (0-255 = 0

-100%)

nCells Corr B3 16+18*nCells correlation beam3 (0-250 = 0

-100%)

nCells Corr B4 16+19*nCells correlation beam4 (0-250 = 0-

100%)

nCells/4 DQ B1 16+20*nCells Data Quality beam 1 (2 bits per

cell) – Currently unused

nCells/4 DQ B2 16+20.25*nCells Data Quality beam 1 (2 bits per

cell) – Currently unused

nCells/4 DQ B3 16+20.5*nCells Data Quality beam 1 (2 bits per

cell) – Currently unused

nCells/4 DQ B4 16+20.75*nCells Data Quality beam 1 (2 bits per

cell) – Currently unused

1 Pad

(if needed)

16+21*nCells A pad byte is added to make

the structure size an even

number. This byte should be

ignored.

Total Size 16 + 21*nCells Bytes (+1 if this calculation is odd)

Bottom Check Data

Data ID = 0x0061

Size Name Offset Description

2 checksum 0 =b58c(hex) + sum of all words in
structure

1 status 2 Bits 0,1,2= number of beams

Bit 4 = Internal memory

approaching full

Bit 5 = Processing error: Data

possibly dropped

Bit 6 = Internal buffering is

occurring

1 pad 3 Unused

4 Timestamp 4 Time stamp (relative to start of

31

collection in 100us)

2 nCells 8 Number of cells in profile

4 distanceToBot

tom

10 Distance to bottom (Float: in mm)

4 rangeStart 14 Range to first amplitude cell

(Float: in mm)

4 resolution 18 Cell size resolution (Float: in mm)

2*nCells Amplitude 22 Amplitude profile (if licensed: in

linear counts)

2*nCells curveFit 22+2*nCells Curve fit to amplitude data (if

licensed: in linear counts)

Total Size 22 + 4*nCells Bytes

32

Beam/Probe Check Data

Beam check data ID = 0x0062

Probe check data ID = 0x0063

Size Name Offset Description

2 checksum 0 =b58c(hex) + sum of all words in
structure

1 status 2 Bits 0,1,2= number of beams

Bit 4 = Internal memory

approaching full

Bit 5 = Processing error: Data

possibly dropped

Bit 6 = Internal buffering is

occurring

1 nBeams 3 Number of beams in profile (4 for

Vectrino Profiler)

4 Timestamp 4 Time stamp (relative to start of

collection in 100us)

2 nCells 8 Number of cells in profile

4 rangeStart 10 Range to first amplitude cell

(Float: in mm)

4 resolution 14 Cell size resolution (Float: in mm)

2*nCells Amplitude

Beam 1

18 Amplitude profile of Beam 1 (in

linear counts)

2*nCells Amplitude

Beam 2

18 +2*nCells Amplitude profile of Beam 2 (in

linear counts)

2*nCells Amplitude

Beam 3

18 +4*nCells Amplitude profile of Beam 3 (in

linear counts)

2*nCells Amplitude

Beam 4

18 +6*nCells Amplitude profile of Beam 4 (in

linear counts)

2*nCells detectedPeaks 18+8*nCells Amplitude peaks detected by the

peak detection algorithm (in linear

counts)

Total Size 18 + 10*nCells Bytes

33

6 USE WITH OTHER INSTRUMENTS

6.1 SYNCHRONIZING WITH OTHER INSTRUMENTS

6.1.1 VECTOR

Sync out

The Vector can be synchronized with other instruments via the SyncIn

and SyncOut. The synchronization option requires that the correct

wiring harness is installed in your system. The SyncOut signal consists

of 1.95 ms long, 3.3V pulses that can be configured for two different

schemes of output synchronization. The selection of the type of

SyncOut signal is made on the Advanced tab in deployment planning. If

Output Sync for other sensor is selected, the SyncOut pulse will be

output in the middle of each velocity-sampling interval. If Output Sync

for Vector is used, the SyncOut pulse will be output at the completion

of each sampling interval. In addition one SyncOut pulse will be output

when the sampling of velocities is started.

Sync In

The SyncIn signal permits external control of the sampling. There are

three possible modes of operation that can be set for Input Sync:

• No Sync. In this mode, the Vector ignores the SyncIn signal and data

collection starts under software control only.

34

• Start on Sync. In this mode, the Vector starts data collection on the

rising edge of the SyncIn signal. Sampling of velocities then proceeds

at the set sampling rate. After data collection is started the SyncIn is

ignored.

• Sample on Sync. In this mode, the Vector outputs a sample after

every rising edge of SyncIn. To use this mode, the Start on Sync mode

must be used as well. Therefore, the first rising edge starts the

averaging process for the first sample only. The first data sample is

output on the second rising edge of SyncIn. The output data at each

rising edge of SyncIn will correspond to an average since the previouis

rising edge of the SyncIn. The Vector must be configured with the

setup software for a sampling rate that is equal to or higher than the

sampling rate that will be used. For example, if the signal on the

SyncIn input to the Vector is generated to correspond to a sampling

rate of 25 Hz, the Vector should be configured in software for a

sampling rate of 32 Hz. In most cases it will be sufficient to

synchronize different Vectors using Start on Sync. Instruments shipped

after November 2000 are fitted with a real time clock with an accuracy

of ±1 min/year over a temperature range of 0–40 °C. Over a burst

period of for example 1 hour, the maximum clock drift between two

Vectors will then be 13.7 ms. Since they will operate at the same

temperature the clock drift is likely to be even smaller. At 8 Hz

sampling rate this will be 1/10 of a sampling interval over one hour of

measurements.

35

Output of the Vector system data (compass, tilt and temperature) is not

synchronized between different Vectors through the use of the SyncIn

signal. Instead, the start on the sync edge that is present in both

synchronization modes is used to start the 1 Hz output of the system

data. Each Vector will then output its system data based on its internal

real time clock. This implies that the number of system data outputs

may vary slightly from one instrument to another. Note that this is not

a problem for the synchronization of the velocity measurements. The

compass and tilt data are used internally in the Vector to ensure

correct transformation of the velocities to earth coordinates when ENU

is selected as coordinate system. In detail, each Vector configured for

Start on Sync will output system data in a certain order at the start of

continuous measurement and at the start of each burst when

configured for burst measurements. The system data are output in the

following order:

1 Output header containing noise measurements and date/clock.

2 Output one sample of system data.

3 Wait until external trigger is detected and then start to output system

data at a 1 Hz rate based on the local clock. Velocity data will be

output according to the configured synchronization scheme.

Specifications of Signal Levels

The SyncIn input voltage must be between 0 V and 5.0 V. The SyncIn is

a Schmitt Trigger input with a pulldown resistor of 100kΩ to ground.

The input threshold values for the SyncIn are:

• Vt+ input positive threshold, 2.2 V

• Vt– input negative threshold, 0.9 V

36

The output voltage levels for the SyncOut are:

• Voh high level output voltage, min 2.5 V

• Vol low level output voltage, max 0.45 V

37

There is spike protection on both signal ports but there is no filtering

on the input port. It is important to consider noise issues (ground-

loops, etc) as noise may cause an unwanted start on sync trigger.

Example 1 Running three Vectors with synchronized sampling of

velocities in continuous mode.

Connect the SyncOut line from one Vector to the SyncIn line on the two

other Vectors. Connect the ground cables together. Choose Output

Sync for Vector for the first Vector. This will be the master. In the setup

for the two other Vectors that will be slaves, check both boxes in the

Input Sync (Start on sync and Sample on sync). With the rest of the

setup identical for the three instruments start the two Vector slaves

first. When the master Vector then is started, it will trigger the start of

the other two Vectors.

Example 2 Running three Vectors with synchronized sampling of

velocities in burst mode.

Connect the SyncOut line from one Vector to the SyncIn line on the two

other Vectors. Connect the ground cables together. Choose Output

Sync for Vector for the first Vector. This will be the master. In the setup

for the two other Vectors that will be slaves, check both boxes in the

Input Sync (Start on sync and Sample on sync). Use identical setup for

the rest of the configuration parameters for all three instruments.

Synchronize the clocks in all the Vectors. Start Recorder Deployment

for the master Vector setting the deployment time to the time when

you want the instrument to start (for example 4.00.00 p.m. or

16.00.00 – exact time format depends on your computer’s settings).

Start Recorder Deployment for the two slave Vectors setting the

deployment time to the deployment time of the master Vector minus

10 seconds (in this example 3.59.50 p.m.). The two slave Vectors will

now wake up in each burst 10 seconds ahead of the master Vector.

After outputting the burst header and one set of system data they will

then wait for the start on sync trigger from the master Vector so that

all three instruments will start the data acquisition simultaneously (in

38

this example at 4.00.00 p.m.). The two slaves will then continue taking

data at the identical rate of the master Vector as they receive the

sample on sync triggers from the master Vector.

The same procedure can of course be used if only synchronized

startup is required. The only difference is that the Sample on sync box

in the Input Sync configuration must be left unchecked.

Example 3 Starting three Vectors simultaneously from another

instrument

Connect the SyncIn signals from the three Vectors together with the

sync output line from the instrument providing the start on sync

signal. Ground all the four instruments together. Using identical and

desired setups for the three Vectors, start all of them with the Start on

sync option configured. Generate the start on sync trigger from the

other instrumentation.

6.1.2 VECTRINO

Your Vectrino can be synchronized with other instruments via a pair of

sync lines. To avoid noise problems and to make cabling easier, the

two sync lines are RS485 which is balanced and bi-directional. The

sync lines are labeled Sync– and Sync+.

Synchronizing Multiple Vectrinos

1 Connect all the Sync+ lines together and all the Sync– lines together.

All instruments should share a common ground.

2 Select one instrument as the master and the rest as slaves (Input

sync) in the software.

3 Start data collection in all slaves before starting the master. The

slaves will then wait for the first sync pulse from the master before

sampling commences. If you use Sample on sync, all instruments

should be configured with the same sampling rate.

39

Synchronizing From a TTL Source

TTL signal levels can be mixed with the RS485 levels of the Vectrino:

Connect your sync pulse to Sync+ and connect Sync– to a constant

voltage, 1.5 volts for instance. This provides a defined transition when

the TTL signal changes, which is not the case if you ground Sync–.

When Vectrino functions as master, the Sync+ line can be connected to

the TTL input and the two systems must be connected so they share

common ground.

How Synchronization Works

Output Sync (operating as the master) transmits a pulse on RS485 with

a duration of 40 μs. SyncOut for Vectrino transmits the pulse by the

end of the sampling interval and a single pulse at the beginning of the

first sampling interval to start off everything. For other sensors,

SyncOut transmits a pulse at the middle of the sampling interval. Input

Sync triggers on any edge, rising or falling, on RS485. After each trig

the input is discarded for the next 64 μs.

RS485 levels:

These levels define the signal the Vectrino reads for Input Sync:

High level: Sync+ > Sync– by 200 mV

Low level: Sync+ < Sync– by 200 mV

Noise problems:

If you encounter noise problems, try terminating the Sync+ line at the

TTL input by connecting a 120 ohm resistor in series with a 1nF

capacitor between the Sync+ line and ground. The best solution for

external sync is using an RS485 as the input/output device.

Note: This implies that a Vectrino can operate as a master for a Vector,

but the opposite is not possible.

40

Example: Vectrino master and Vector slave

1. Connect ground of the two systems together

2. Connect sync+ (sync2) on the Vectrino to SyncInput on the Vector

3. Configure the Vectrino with the desired velocity range, 30 Hz

sampling rate and select output sync for Vectrino and check the

box for master

4. Configure the Vector with the desired velocity range, continuous

sampling, the next higher available sample rate (so 32 Hz in this

example) and check the boxes for start on sync and sample on

sync

5. Select the file name for disk recording in both software instances

and make sure you also start disk recording in both software

instances at this point.

6. Press Start Data Collection in the Vector software

7. Press Start Data Collection in the Vectrino software

8. The measured data will now be shown on the display and stored

to file, synchronized to each other.

41

7 CONVERSION UTILITY

A conversion utility (vProToNTK.exe) which allows raw Vectrino Profiler data

collected directly from the serial port to be converted into the NTK file format.

From there the data can be exported to either Matlab or ASCII format using

the export functions. The data file collected must have the binary

configuration records included in the file before the raw data records in order

for the conversion utility to work. The configuration records must include a

command header with the ID set to the equivalent “get” command (e.g. “GC”

for the instrument configuration or “GH” for the head configuration; see the

sample code following). As with the main acquisition application, the

associated l4j.ini file (vProToNTK.l4j.ini) can be modified to increase the

amount of memory used by the JVM to reduce the number of split files

produced by the Matlab export function (see the section on “Increasing the

amount of memory available to the application”).

8 SAMPLE CODE

For your convenience, sample code showing integration with the

Vectrino Profiler is included here.

The following examples are provided:

• Class definition for serial port operations

• Decoding the data structures and interacting with the instrument

• Structure definitions

42

This code also shows how to create a binary data output file that can

be converted into the Nortek .NTK format using the included

vProToNTK.exe utility that can be found in the installation directory of

the software.

8.1 SERIAL PORT DEFINITION

class serialPort {
private:
 HANDLE handle;
 char errMsg[ERR_SIZE];

public:
 serialPort();
 bool open(int port);
 void close(void);
 bool configure(int32_t baudrate, int8_t bytesize, int32_t fparity, int8_t parity,
 int8_t stopbits);
 int read(char *buffer, DWORD min_bytes, DWORD max_bytes);
 bool timeouts (int readinterval, int readmult, int readconst,
 int writemult, int writeconst);

 int write(char *buffer, DWORD bytes);
 bool sendBreak(int ms);
 void flushIn(void);
 virtual ~serialPort();
};

43

8.2 INTERACTING WITH THE INSTRUMENT AND DECODING DATA

STRUCTURES

/**
 * @file VectrinoProfilerData.c
 *
 * Sample configuration and control program for the Vectrino Profiler
 * Velocimeter
 *
 * @author R.G.A. Craig
 * @par Edit History
 * - rcraig 13-JUN-2012 Doxygen comments added.
 * - rcraig 3-JULY-2014 Various updates (including saving a binary file)
 *
 * @par Copyright © 2013-2014 Nortek Scientific Acoustics Group Inc.
 * All rights reserved.
 *
 **/
#include <iostream>
using namespace std;
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/time.h>
#include <windows.h>
#include <math.h>
#include <ctype.h>

#include "serialPort.h"
#include "VectrinoProfilerCust.h"

// Buffer used for instrument communications
#define BUFF_SIZE (1024*10)
char serBuff[BUFF_SIZE];

serialPort port;

tVectrinoProfilerConfig cfg;

// Baud rates to check during connection to the VectrinoII
int rates[] = { 9600, 19200, 38400, 57600, 115200, 230400, 460800, 937500, 1250000 };
#define DEFAULT_BAUD 937500

#define VPROFILER_NBEAMS 4

#define COMMAND_FAILED -1
#define COMMAND_SUCCEEDED 0

FILE *pBinaryFile;

44

///***
// Function: checkSum
//
/// Computes a checksum given a data buffer and the number of bytes in the
/// buffer
///
/// @param [in] buff Pointer to the data
/// @param [in] nbytes Number of bytes in the buffer
///
/// @return The calculated checksum
///***
static short checkSum(char *buff, int n)
{
 int i;
 short *p_short = (short *) buff;
 short check_sum = (short) 0xb58c;

 for (i = 0; i < n / 2; i++) {
 check_sum += p_short[i];
 }

 return (check_sum);
}

///***
// Function: resync
//
/// Reads the serial port a byte at a time until a valid protocol header is
/// received
///
/// @param[out] p_hdr Header read in after re-sync
///
/// @return 0 if successful, 1 on failure
///***
int resync(tCommandHeader *p_hdr)
{
 while (port.read((char *) p_hdr, 1, 1) == 1) {
 if (p_hdr->sync == SYNC_BYTE) {
 if (port.read(((char *) p_hdr) + 1, sizeof(tCommandHeader) - 1, sizeof(tCommandHeader)
- 1)
 == sizeof(tCommandHeader) - 1) {
 if (p_hdr->checksum == checkSum((char *) p_hdr, (sizeof(tCommandHeader) - 2)))
{
 return (1);
 } else {
 unsigned char *p_char = (unsigned char *) (p_hdr) + 1;
 for (unsigned int i = 0; i < sizeof(tCommandHeader) - 1; i++) {
 if (p_char[i] == SYNC_BYTE) {
 printf("S...\n\n");
 }
 }
 }
 }
 }
 }

 return (0);
}

///***
// Function: readBlock
//
/// Reads a full block (header + any associated data) from the serial port
/// @param[out] rx_data Data read after the protocol header
/// @param[out] rx_length Length of data block received
/// @param[out] do_resync Synchronize the data stream to read a valid header
///
/// @return The ID contained in the header on success or 0x1515 on failure
///***
static tCommandHeader readHdr;

45

int readBlock(char *rx_data, unsigned int *rx_length, int do_resync)
{
 int bytes;

 memset(&readHdr, 0, sizeof(readHdr));

 if (port.read((char *) &readHdr, 1, 1) == 0) {
 printf("No data on port.\n");
 return (VECTRINOPROFILER_ID_ERR);
 }
 if (readHdr.sync != SYNC_BYTE && do_resync) {
 printf("Unsynced\n");
 if (!resync(&readHdr)) {
 printf("Resync failed\n");
 return (VECTRINOPROFILER_ID_ERR);
 }
 } else {
 if ((bytes = port.read(((char *) &readHdr + 1), sizeof(readHdr) - 1, sizeof(readHdr) - 1)) !=
sizeof(readHdr) - 1) {
 printf("Read port failed (%d bytes read)\n", bytes);
 return (VECTRINOPROFILER_ID_ERR);
 }
 }

 short csum = checkSum((char *) &readHdr, (sizeof(readHdr) - 2));
 if (readHdr.checksum != csum) {
 // Flush port and return error. */
 port.flushIn();
 printf("Header checksum failed. Expected %d. Got %d. \n", readHdr.checksum, csum);
 return (VECTRINOPROFILER_ID_ERR);
 }

 if (readHdr.dataSize > 0) {
 if (readHdr.dataSize <= *rx_length) {
 if ((*rx_length = port.read((rx_data), readHdr.dataSize, readHdr.dataSize)) !=
readHdr.dataSize) {
 printf("Read extra failed (Got %d bytes, expected %d bytes)\n", *rx_length,
readHdr.dataSize);
 port.flushIn();
 return (VECTRINOPROFILER_ID_ERR);
 }
 } else {
 printf("Data size too large %d vs %d for ID %08x\n", readHdr.dataSize, *rx_length,
readHdr.ID);
 // Flush port.
 port.flushIn();
 return (VECTRINOPROFILER_ID_ERR);
 }
 } else {
 *rx_length = 0;
 }

 return (readHdr.ID);

}

///***
// Function: Send a command to the instrument
//
/// Reads a full block (header + any associated data) from the serial port
/// @param[in] id The command ID to be transmitted
/// @param[in] tx_data Data to be transmitted after the protocol header
/// @param[in] tx_length Length of data block to transmit
/// @param[out] rx_data Data read after the protocol header
/// @param[out] rx_length Length of data block received
/// @param[out] resync Synchronize the data stream to read a valid header
///
/// @return The ID contained in the header on success or 0x1515 on failure
///***
int sendCommand(uint16_t id, char *tx_data, int tx_length, char *rx_data, unsigned int *rx_length, int
resync)
{
 tCommandHeader hdr;

46

 hdr.ID = id;
 hdr.refer = 0;
 hdr.dataSize = tx_length;
 hdr.sync = SYNC_BYTE;
 hdr.checksum = checkSum((char *) (&hdr), (sizeof(hdr) - 2));

 if (port.write((char *) (&hdr), sizeof(hdr)) != sizeof(hdr)) {
 return (VECTRINOPROFILER_ID_ERR);
 }
 if (tx_length > 0) {
 if (tx_length != port.write(tx_data, tx_length)) {
 return (VECTRINOPROFILER_ID_ERR);
 }
 }
 return (readBlock(rx_data, rx_length, resync));
}

///***
// Function: Writes a data block to an already opened binary data file
//
/// @param[in] id The command ID to be used in the protocol header
/// @param[in] pData Pointer to data to be written after the header
/// @param[in] length Length of data to be written
///
/// @return 0x0606 on success or 0x1515 on failure
///***
int writeData(uint16_t id, char *pData, unsigned int length)
{
 tCommandHeader hdr;
 if (pBinaryFile == NULL) {
 return(-1);
 }

 hdr.ID = id;
 hdr.refer = 0;
 hdr.dataSize = length;
 hdr.sync = SYNC_BYTE;
 hdr.checksum = checkSum((char *) (&hdr), (sizeof(hdr) - 2));

 if (fwrite((void *) (&hdr), 1, sizeof(hdr), pBinaryFile) != sizeof(hdr)) {
 return (VECTRINOPROFILER_ID_ERR);
 }
 if (length > 0) {
 if (length != fwrite((void *)pData, 1, length, pBinaryFile)) {
 return (VECTRINOPROFILER_ID_ERR);
 }
 }
 return (VECTRINOPROFILER_ID_SUCCESS);
}

///***
// Function: switchMeasurement
//
/// Switch the instrument into measurement mode
///
/// @return 0 on success -1 on failure
///***
int switchMeasurement(void)
{
 unsigned int length = BUFF_SIZE;

 if (sendCommand((int) VECTRINOPROFILER_COMMAND_MODE_MEASURE, NULL, 0, serBuff, &length,
 1) == VECTRINOPROFILER_ID_SUCCESS) {
 return (COMMAND_SUCCEEDED);
 } else {
 return (COMMAND_FAILED);
 }
}

///***
// Function: switchCommand
//
/// Switch the instrument into command mode.

47

/// @param[out] response Response string returned by instrument
/// @param[out] resp_length Length of the response string
/// @param[in] resync Whether or not to re-sync the input stream
/// @return 0 on success -1 on failure
///***
int switchCommand(char *response, unsigned int *resp_length, int resync)
{

 int org_length = *resp_length;
 int res;

 port.write((char *) "@@@@@@", 6);
 Sleep(10);
 port.write((char *) VECTRINOPROFILER_BREAK_STRING, strlen(VECTRINOPROFILER_BREAK_STRING));

 Sleep(10);
 port.flushIn();
 if ((res = sendCommand(VECTRINOPROFILER_COMMAND_MODE_COMMAND, NULL, 0, response, resp_length, resync))
 == VECTRINOPROFILER_ID_SUCCESS) {
 return (COMMAND_SUCCEEDED);
 } else {
 /* Possibly a data record. Try reading another block to see if it's the "success" block.*/
 while (res == VECTRINOPROFILER_ID_VEL) {
 *resp_length = org_length;
 res = readBlock(response, resp_length, resync);
 }
 if (res == VECTRINOPROFILER_ID_SUCCESS) {
 return (COMMAND_SUCCEEDED);
 } else {
 return (COMMAND_FAILED);
 }
 }
}

///***
// Function: setConfig
//
/// Sets the configuration of the instrument
///
/// @param[in] config Instrument configuration structure
/// @return NULL on success or an error string on failure
///***
char * setConfig(tVectrinoProfilerConfig *config)
{
 unsigned int rx_length = BUFF_SIZE;
 config->version = VECTRINOPROFILER_CONFIG_VERSION;
 config->size = sizeof(tVectrinoProfilerConfig);
 config->checksum = checkSum((char *) (config), (sizeof(tVectrinoProfilerConfig) - 2));

 if ((sendCommand(VECTRINOPROFILER_COMMAND_SET_CFG, (char *) (config), sizeof(tVectrinoProfilerConfig),
serBuff,
 &rx_length, 1)) == VECTRINOPROFILER_ID_SUCCESS) {
 return (NULL);
 } else {
 return (serBuff);
 }
}

///***
// Function: getConfig
//
/// Gets the current configuration of the instrument
///
/// @param[in] config Instrument configuration structure
/// @return NULL on success or an error string on failure
///***
char * getConfig(tVectrinoProfilerConfig *config)
{
 unsigned int rx_length = BUFF_SIZE;
 char *errString = NULL;

 if ((sendCommand(VECTRINOPROFILER_COMMAND_GET_CFG, NULL, 0, serBuff, &rx_length, 1)) ==
VECTRINOPROFILER_ID_SUCCESS) {
 if (rx_length == sizeof(tVectrinoProfilerConfig)) {

48

 tVectrinoProfilerConfig *pcfg = (tVectrinoProfilerConfig *) (serBuff);
 if (pcfg->version == VECTRINOPROFILER_CONFIG_VERSION) {
 if (checkSum((char *) pcfg, (sizeof(tVectrinoProfilerConfig) - 2)) == pcfg-
>checksum) {
 *config = *pcfg;
 } else {
 errString = (char *) "Configuration checksum mismatch";
 port.flushIn();
 }
 } else {
 errString = (char *) "Configuration version mismatch";
 port.flushIn();
 }
 } else {
 errString = (char *) "Incompatible firmware load";
 port.flushIn();
 }
 } else {
 errString = serBuff;
 }
 return (errString);
}

///***
// Function: getID
//
/// Gets the instrument ID
///
/// @return NULL on success or an error string on failure
///***
char * getID(void)
{
 unsigned int rx_length = BUFF_SIZE;
 serBuff[0] = 0;
 sendCommand(VECTRINOPROFILER_COMMAND_GET_ID, NULL, 0, serBuff, &rx_length, 1);
 serBuff[rx_length] = 0;
 return (serBuff);
}

///***
// Function: changeBaudRate
//
/// Changes the baud rate of the instrument and re-configures the
/// serial port to use the new baud rate.
///
/// @return NULL on success or an error string on failure
///***
char * changeBaudRate(int rate, int portnum)
{
 char *errString = NULL;

 unsigned int rx_length = BUFF_SIZE;

 if ((sendCommand(VECTRINOPROFILER_COMMAND_SET_BAUDRATE, (char *) (&rate), 4, serBuff, &rx_length, 1))
 == VECTRINOPROFILER_ID_SUCCESS) {
 errString = NULL;
 port.close();
 Sleep(100);

 port.open(portnum);
 port.flushIn();
 if (!port.configure(rate, 8, FALSE, NOPARITY, ONESTOPBIT)) {
 return (char *) ("Serial port configure failed\n");
 }
 } else {
 errString = serBuff;
 }
 return (errString);

}

/* Zeroes out the averaged velocity data */
void initVelocities(int nCells, int nBeams, float avgVelocities[])
{

49

 for (int b = 0; b < nBeams * nCells; b++) {
 avgVelocities[b] = 0;
 }
}

///***
// Function: collectData
//
/// Sample routine showing how to read data from the Profiler in measurement
/// mode.
/// param[in] full_time Length of time to collect data (s)
/// param[in] discard_time Discard all data at the start for this time period
/// param[out] avg_velocities Averaged velocities from data read
///
/// @return 0 on success, -1 if no samples read.
///***
int collectData(float full_time, float discard_time, float avgVelocities[])
{
 int id;
 unsigned int rx_length;
 struct timeval tcurr, told, tstart;
 int csum;
 double elapsed_time;
 int nsamples = 0;
 int announce = 1;
 int nCells = 0;
 int init = 0;
 double vscale;
 int nBeams;

 vscale = pow(10.0, cfg.velocityExponent);

 gettimeofday(&tstart, NULL);
 elapsed_time = 0;
 while (elapsed_time < full_time) {

 rx_length = BUFF_SIZE;
 id = readBlock(serBuff, &rx_length, 1);

 gettimeofday(&tcurr, NULL);
 elapsed_time = (tcurr.tv_sec - tstart.tv_sec) + (tcurr.tv_usec - tstart.tv_usec) * 1.e-6;

 if (elapsed_time > announce) {
 printf("Collected %g seconds of data (%d samples)\n", elapsed_time, nsamples);
 announce++;
 }
 told = tcurr;
 if (readHdr.refer & VECTRINOII_HDR_STATUS_LOW_MEM) {
 // Running out of internal memory.
 }

 if (readHdr.refer & VECTRINOII_HDR_STATUS_BUFFERING) {
 // Transfer rate slower than internal collection rate. Data is being buffered in
 // internal memory
 }

 if (readHdr.refer & VECTRINOII_HDR_STATUS_STOPPED_OOM) {
 // Internal data collection has stopped. The internal data queue
 // has been filled.

 }

 if (readHdr.refer & VECTRINOII_HDR_STATUS_INT_ERROR) {
 // Internal error occurred.

 }

 switch (id) {
 case VECTRINOPROFILER_ID_VEL:

{
 tVectrinoProfilerVelData *pVelS = (tVectrinoProfilerVelData *) serBuff;
 csum = checkSum((serBuff + 2), (rx_length - 2));
 if (csum != pVelS->checksum) {
 printf("Checksum mismatch %d vs %d\n\n", csum, pVelS->checksum);

50

 break;
 }

 if (((pVelS->status & 0x7) != nBeams) || (pVelS->nCells != nCells)) {
 printf("ERROR: Number of cells / beams in velocity record don't match
velocity header record");
 break;
 }

 writeData(VECTRINOPROFILER_ID_VEL, serBuff, rx_length);

 if (pVelS->status & VECTRINOPROFILER_STATUS_MEM_FLAG) {
 // Running out of internal memory. Data collection will be stopped
 // shortly.
 }

 if (pVelS->status & VECTRINOPROFILER_STATUS_BUFFERING_FLAG) {
 // Transfer rate slower than internal collection rate. Data is being
buffered in
 // internal memory
 }

 if (pVelS->status & VECTRINOPROFILER_STATUS_DR_FLAG) {
 // The per sample processing time was exceeded. Data may have been
dropped.
 // This is a very unusual occurrence.
 }

// int npts = nBeams * nCells;
 // Data is output in row major format.
 tVelData *p_v = (tVelData *) (serBuff + sizeof(tVectrinoProfilerVelData));
// tAmpData *p_a = (tAmpData *) (p_v + npts);
// tCorrData *p_c = (tCorrData *) (p_a + npts);
// uint8_t *p_dq = (uint8_t *) (p_c + npts);

 if (pVelS->timeStamp * 1.e-4 > discard_time) {
 for (int b = 0; b < nBeams; b++) {
 for (int c = 0; c < nCells; c++) {
 avgVelocities[b * nCells + c] += vscale * p_v[b *
nCells + c];
 }
 }
 nsamples++;
 }
 }

 break;

 case VECTRINOPROFILER_ID_VEL_HEADER:

{
 printf("Velocity header received\n");
 tVectrinoProfilerVelHeader *pVelH = (tVectrinoProfilerVelHeader *) (serBuff);
 csum = checkSum((serBuff + 2), (rx_length - 2));
 if (csum != pVelH->checksum) {
 printf("Checksum mismatch %d vs %d\n\n", csum, pVelH->checksum);
 break;
 }
 writeData(VECTRINOPROFILER_ID_VEL_HEADER, serBuff, rx_length);
 nCells = pVelH->nCells;
 nBeams = (int) (pVelH->status & 0x7);

 if (!init) {
 initVelocities(nCells, nBeams, avgVelocities);
 }

 if (pVelH->headerOnly != 0) {
// int streams = pVelH->status & 0x7;
// int bins = pVelH->nCells;
// int npts = streams * bins;
// tAmpData *pNoiseAmp = (tAmpData *) (serBuff +
sizeof(tVectrinoProfilerVelHeader));
// tCorrData *pNoiseCorr = (tCorrData *) (pNoiseAmp + npts);
 }
 }

51

 break;

 case VECTRINOPROFILER_ID_BOTTOMCHECK:

{
 tBottomCheckData *pBottom = (tBottomCheckData *) (serBuff);
 csum = checkSum((serBuff + 2), (rx_length - 2));
 if (csum != pBottom->checksum) {
 printf("Checksum mismatch %d vs %d\n\n", csum, pBottom->checksum);
 break;
 }
 writeData(VECTRINOPROFILER_ID_BOTTOMCHECK, serBuff, rx_length);
// tAmpData *pBottProfile = (tAmpData *) (serBuff + sizeof(tBottomCheckData));
// tAmpData *pCurveFit = (tAmpData *) (pBottProfile + pBottom->nCells);
 }
 break;

 case VECTRINOPROFILER_ID_BEAMCHECK:

{
 tBeamCheckData *pBeam = (tBeamCheckData *) (serBuff);
 csum = checkSum((serBuff + 2), (rx_length - 2));
 if (csum != pBeam->checksum) {
 printf("Checksum mismatch %d vs %d\n\n", csum, pBeam->checksum);
 break;
 }
 writeData(VECTRINOPROFILER_ID_BEAMCHECK, serBuff, rx_length);
 printf("Beam check received %d %g %g\n", pBeam->nCells, pBeam->binResolution,
pBeam->rangeStart);
// tAmpData *pBeamProfiles = (tAmpData *) (serBuff + sizeof(tBeamCheckData));
// tAmpData *pDetectedPeaks = (tAmpData *) (pBeamProfiles + pBeam->nBeams *
pBeam->nCells);
 }
 break;

 case VECTRINOPROFILER_ID_PROBECHECK:

{
 tBeamCheckData *pProbeCheck = (tBeamCheckData *) (serBuff);
 csum = checkSum((serBuff + 2), (rx_length - 2));
 if (csum != pProbeCheck->checksum) {
 printf("Checksum mismatch %d vs %d\n\n", csum, pProbeCheck->checksum);
 break;
 }
 writeData(VECTRINOPROFILER_ID_PROBECHECK, serBuff, rx_length);
 printf("Probe check received %d %g %g\n", pProbeCheck->nCells, pProbeCheck-
>binResolution,
 pProbeCheck->rangeStart);
// tAmpData *pProbeCheckProfiles = (tAmpData *) (serBuff +
sizeof(tBeamCheckData));
 }
 break;

 case VECTRINOPROFILER_ID_BUFFER_FULL:
 writeData(VECTRINOPROFILER_ID_BUFFER_FULL, serBuff, 0);
 printf("Internal memory buffer full...\n\n");
 break;
 case VECTRINOPROFILER_ID_STOPPED:
 writeData(VECTRINOPROFILER_ID_STOPPED, serBuff, 0);
 printf("Collection stopped by instrument...\n\n");
 break;
 default:
 port.flushIn();
 printf("ERROR id=%08x\n\n", id);
 break;
 }
 }

 if (nsamples > 0) {
 for (int n = 0; n < nCells * nBeams; n++) {
 avgVelocities[n] /= nsamples;
 }
 return (COMMAND_SUCCEEDED);
 } else {
 return (COMMAND_FAILED);
 }

52

}

// Pause for a period of time before exiting.
void endit(void)
{
 for (int i = 0; i < 10; i++) {
 Sleep(1000);
 }
 if (pBinaryFile != NULL) {
 fclose(pBinaryFile);
 pBinaryFile = NULL;
 }
 exit(0);
}

int main(int argc, char *argv[])
{
 unsigned int rx_length;
 int portnum = 5;
 int baud = DEFAULT_BAUD;
 char *res;
 char *binaryFileName = NULL;
 char c;
 float tacq = 30.F;

 printf ("Collecting data");
 while ((c = getopt (argc, argv, "p:b:f:t:")) != -1) {
 switch (c) {
 case 'p':
 portnum = atoi(optarg);
 printf(" on comms port %d", portnum);
 break;
 case 'b':
 baud = atoi(optarg);
 printf(" at port speed %d", baud);
 break;
 case 'f':
 binaryFile = optarg;
 printf (" into binary file %s", binaryFileName);
 break;
 case 't':
 tacq = atof(optarg);
 printf(" for %g seconds", tacq);
 break;
 default:
 break;
 }
 }

 printf(".\r\n\r\n");

 if (!port.open(portnum)) {
 printf("Serial port open failed\n");
 endit();
 }

 unsigned int rt = 0xFFFFFFFF;
 if (!port.configure(baud, 8, FALSE, NOPARITY, ONESTOPBIT)) {
 printf("Serial port configure failed\n");
 endit();
 }

 if (binaryFileName == NULL) {
 pBinaryFile = NULL;
 } else {
 pBinaryFile = fopen(binaryFileName, "wb");
 }

 port.timeouts(50, 10, 1000, 10, 1000);
 rx_length = BUFF_SIZE;
 port.flushIn();

 bool connected = (COMMAND_SUCCEEDED == switchCommand(serBuff, &rx_length, 0));

53

 while (!connected && ++rt < (sizeof(rates) / sizeof *rates)) {
 port.close();
 Sleep(100);

 port.open(portnum);
 port.flushIn();
 baud = rates[rt];
 printf("Trying rate %d...", baud);
 if (!port.configure(baud, 8, FALSE, NOPARITY, ONESTOPBIT)) {
 printf("Serial port configure failed\n");
 endit();
 }
 if (COMMAND_SUCCEEDED == switchCommand(serBuff, &rx_length, 0)) {
 connected = true;
 } else {
 printf("Failed \n");
 }
 }

 if (!connected) {
 printf("\nNo instrument detected.\n\n");
 endit();
 }

 // Print out the ID string generated by the switch to command mode. */
 printf(serBuff);
 printf("\nConnected to %s\n", getID());

 // Get the configuration to initialize all of the configuration elements
 // before re-configuring.
 if ((res = getConfig(&cfg)) != NULL) {
 printf("Error: %s\n", res);
 endit();
 }

 if ((res = setConfig(&cfg)) != NULL) {
 printf("Error: %s\n", res);
 endit();
 }

 if (rt != 0xFFFFFFFF) {
 char *res = changeBaudRate(DEFAULT_BAUD, portnum);
 if (res != NULL) {
 printf("Change baud rate failed %s\n", res);
 }
 if (COMMAND_SUCCEEDED == switchCommand(serBuff, &rx_length, 0)) {
 if ((sendCommand(VECTRINOPROFILER_COMMAND_SAVE_BAUDRATE, serBuff, 0, serBuff,
&rx_length, 1))
 != VECTRINOPROFILER_ID_SUCCESS) {
 printf("Save baudrate failed.\n\n");
 }
 connected = true;

 } else {
 connected = false;
 }
 }

 if (!connected) {
 printf("No instrument detected after baud rate change.\n\n");
 endit();
 }

 printf("Vectrino-Profiler found. Current baud rate is %d Baud\n\n", baud);

 /* Write the configuration, head configuration, product configuration and profile calibration
information
 * into the binary data file. */
 writeData(VECTRINOPROFILER_COMMAND_GET_CFG, (char *)(&cfg), sizeof(tVectrinoProfilerConfig));

 rx_length = BUFF_SIZE;
 if (sendCommand(VECTRINOPROFILER_COMMAND_GET_HEAD, NULL, 0, serBuff, &rx_length, 1) ==
VECTRINOPROFILER_ID_SUCCESS) {

54

 writeData(VECTRINOPROFILER_COMMAND_GET_HEAD, serBuff, rx_length);
 }

 rx_length = BUFF_SIZE;
 if (sendCommand(VECTRINOPROFILER_COMMAND_GET_PROD, NULL, 0, serBuff, &rx_length, 1) ==
VECTRINOPROFILER_ID_SUCCESS) {
 writeData(VECTRINOPROFILER_COMMAND_GET_PROD, serBuff, rx_length);
 }

 rx_length = BUFF_SIZE;
 if (sendCommand(VECTRINOPROFILER_COMMAND_GET_PROFCALIB, NULL, 0, serBuff, &rx_length, 1) ==
VECTRINOPROFILER_ID_SUCCESS) {
 writeData(VECTRINOPROFILER_COMMAND_GET_PROFCALIB, serBuff, rx_length);
 }

 float *avgVelocities;
 avgVelocities = (float *) malloc(sizeof(float) * VPROFILER_NBEAMS * 100);
 rx_length = BUFF_SIZE;

 if (COMMAND_SUCCEEDED != switchMeasurement()) {
 printf("Switch into measurement mode failed.");
 endit();
 }

 collectData(tacq, 0.0, avgVelocities);

 rx_length = BUFF_SIZE;

 if (COMMAND_SUCCEEDED == switchCommand(serBuff, &rx_length, 1)) {
 printf("Average velocities collected \n\n");
 } else {
 printf("NO COMMAND MODE\n\n\n");
 }
 if (pBinaryFile != NULL) {
 fclose(pBinaryFile);
 }
 return 0;
}

8.3 STRUCTURE DEFINITIONS

#ifndef _VECTRINOPROFILERCUST_
#define _VECTRINOPROFILERCUST_

#include <stdint.h>

/* 2 byte aligned packing required.*/
#pragma pack(2)

#define SYNC_BYTE 0xA5

typedef struct {
 uint8_t sync; // Synchronization byte (0xA5)
 uint8_t refer; // Unused.
 uint16_t ID; // Command / Data record ID
 uint16_t dataSize; // Size of data to follow this header
 int16_t checksum; // Word-wise checksum of this header
} tCommandHeader;

#define VECTRINOPROFILER_ID_ERR 0x1515
#define VECTRINOPROFILER_ID_SUCCESS 0x0606

#define COMMANDVALUE(a) ((uint16_t)a[1] + (uint16_t)(a[0] << 8))
#define VECTRINOPROFILER_COMMAND_MODE_MEASURE COMMANDVALUE("ST") // Start measurement
#define VECTRINOPROFILER_COMMAND_MODE_COMMAND COMMANDVALUE("MC") // Command mode
#define VECTRINOPROFILER_COMMAND_GET_PROD COMMANDVALUE("GP") // Get product
configuration

55

#define VECTRINOPROFILER_COMMAND_GET_HEAD COMMANDVALUE("GH") // Get head
configuration
#define VECTRINOPROFILER_COMMAND_GET_PROFCALIB COMMANDVALUE("GR") // Get profile calibration
#define VECTRINOPROFILER_COMMAND_SET_CFG COMMANDVALUE("CC") // Set configuration
#define VECTRINOPROFILER_COMMAND_GET_CFG COMMANDVALUE("GC") // Get configuration
#define VECTRINOPROFILER_COMMAND_GET_ID COMMANDVALUE("ID") // Get
instrument ID

#define VECTRINOPROFILER_COMMAND_SET_BAUDRATE COMMANDVALUE("BR") // Set baud rate
#define VECTRINOPROFILER_COMMAND_SAVE_BAUDRATE COMMANDVALUE("SB") // Save baud rate

#define VECTRINOPROFILER_BREAK_STRING "K1W%!Q"

#define VECTRINOPROFILER_COORDS_EARTH 0
#define VECTRINOPROFILER_COORDS_XYZ 1
#define VECTRINOPROFILER_COORDS_BEAM 2
#define VECTRINOPROFILER_COORDS_PHASE 3

#define VECTRINOPROFILER_SYNC_NONE 0
#define VECTRINOPROFILER_SYNC_START 1
#define VECTRINOPROFILER_SYNC_MEASURE 2
#define VECTRINOPROFILER_SYNC_MASTER_VECTRINO 3
#define VECTRINOPROFILER_SYNC_MASTER_OTHER 4

#define VECTRINOPROFILER_POWER_LOW_MINUS 1
#define VECTRINOPROFILER_POWER_LOW 2
#define VECTRINOPROFILER_POWER_HIGH_MINUS 3
#define VECTRINOPROFILER_POWER_HIGH 4

#define VECTRINOPROFILER_MAX_FREQUENCIES 4
#define VECTRINOPROFILER_CONFIG_VERSION 6
#define VECTRINOPROFILER_BOTTOMCONFIG_VERSION 3

#define EXPORT(a,b,c)
#define EXPORTG(a,b,c,g)

#define VECTRINOPROFILER_ID_BUFFER_FULL 0x0100 // Indicates that internal buffering of
collected data
 // has been exhausted and that data collection
is halting
#define VECTRINOPROFILER_ID_STOPPED 0x0101 // Indicates that data collection was halted
 // The reason is contained in the body of the
message

// Status bits reported in data records
#define VECTRINOPROFILER_STATUS_MEM_FLAG 0x08 // Indicates less than 10 sample buffers
remain in

 // internal memory buffer
#define VECTRINOPROFILER_STATUS_DR_FLAG 0x10 // Indicates "out of processing time" (data
possibly DRopped) problem
#define VECTRINOPROFILER_STATUS_BUFFERING_FLAG 0x20 // Indicates that internal buffering of data
is occurring

// Status bits reported in first four bits of header refer field
#define VECTRINOII_HDR_STATUS_LOW_MEM 0x10 // Indicates < 250K remains in data buffer
#define VECTRINOII_HDR_STATUS_BUFFERING 0x20 // Internal buffering of data is occurring
#define VECTRINOII_HDR_STATUS_STOPPED_OOM 0x40 // Data collection has stopped because the internal
data queue is full
#define VECTRINOII_HDR_STATUS_INT_ERROR 0x80 // Internal error has been detected

typedef struct {
 uint16_t size; EXPORT(N, "", "")
 uint8_t version; EXPORT(N, "", "")
 uint8_t supported; EXPORTG(Y, "", "1 = Profiled bottom check /
Dynamic adaptive check 2 = Bottom check / Static adaptive check", G)
 uint8_t enable; EXPORTG(Y, "", "1 = Check enabled", B)
 uint8_t rangeCompensateAmp; EXPORTG(Y, "", "1 = Compensate for range dependent
attenuation in amplitude", B)
 uint8_t probeCheck; EXPORT(N, "", "")
 uint8_t pad1; EXPORT(N, "", "")

56

 float sampleRate; EXPORTG(Y, "Hz", "Bottom check sample rate",
B)
 uint16_t minRange; EXPORTG(Y, "mm", "Requested minimum range", B)
 uint16_t maxRange; EXPORTG(Y, "mm", "Requested maximum range", B)
 uint16_t nCells; EXPORTG(Y, "", "Number of cells to collect", B)
 uint16_t cellSize; EXPORTG(Y, "0.1mm", "Requested cell sample length", B)
 float cellSizeSelected; EXPORTG(Y, "mm", "Selected cell sample length", G)
 float minRangeSelected; EXPORTG(Y, "mm", "Selected range to first cell", G)
 float maxRangeSelected; EXPORTG(Y, "mm", "Selected range to last cell", G)
 uint16_t gainReductiondB; EXPORTG(Y, "dB", "Amplifier gain reduction", B)
 uint16_t pad2[5];
} tBottomCheckConfig;

typedef struct {
 uint16_t size; EXPORT(N, "","")
 uint8_t version; // Version number of this structure.
 uint8_t coordSystem; EXPORTG(Y, "", "0=Earth 1=XYZ 2=Beam 3=Phase", B)
 uint8_t calcSpeedOfSound; EXPORTG(Y, "", "Speed of sound (0=fixed,
1=calculated)", B)

 uint8_t syncType; EXPORTG(Y, "", "0=None 1=On start 2=On measure
3=Master (Vectrino) 4=Master (Other)", B)

 uint8_t nTransducers; EXPORTG(Y, "", "Number of receive transducers in
instrument", G)
 uint8_t nFrequencies; EXPORTG(Y, "", "Number of simultaneous frequencies
transmitted", G)
 uint8_t calcSampleRate; EXPORT(N, "", "")
 uint8_t calcPingInterval; EXPORTG(Y, "", "1:Minimum 2:maximum 3:adaptive.
Extended mode unwrap if bit 4=1, dual PRF otherwise", B)
 uint8_t powerLevel; EXPORTG(Y, "", "1:Low- 2:Low 3:High- 4:High", B)
 uint8_t internalBufferMemory; EXPORTG(Y, "MB", "Internal memory available for
buffering data", G)
 uint8_t pad1[4];

 // 4 byte aligned
 float speedOfSound; EXPORTG(Y, "m/s", "Speed of sound", B)
 float sampleRate; EXPORTG(Y, "Hz", "Ensemble sample rate", B)
 uint16_t freq[VECTRINOPROFILER_MAX_FREQUENCIES]; EXPORT(Y, "kHz", "Transmit frequencies")
 uint8_t amp[VECTRINOPROFILER_MAX_FREQUENCIES]; EXPORT(Y, "%", "Amplitude of each
pulse")
 uint16_t pulseLength[VECTRINOPROFILER_MAX_FREQUENCIES]; EXPORTG(Y, "0.1mm", "Transmit pulse length",
B)
 uint16_t blankingInterval; EXPORT(Y, "us", "")
 uint16_t pingInterval; EXPORTG(Y, "us", "Time interval between pings", G)
 uint16_t ensemblePingPairs; EXPORTG(Y, "", "Number of ping pairs to average together to
produce a measurement", G)
 uint16_t cellSize; EXPORTG(Y, "0.1mm", "Requested cell sample
length", B)
 uint16_t nCells; EXPORTG(Y, "", "Number of cells to collect", B)
 uint16_t cellStart; EXPORTG(Y, "0.1mm", "Range to first cell", B)
 float cellSizeSelected; EXPORTG(Y, "mm", "Selected cell sample length", G)
 float cellStartSelected; EXPORTG(Y, "mm", "Selected range to first cell", G)
 uint16_t salinity; EXPORTG(Y, "0.1ppt", "", B)
 uint16_t velocityRange; EXPORTG(Y, "mm/s", "Velocity ranges from + to - this value",
B)
 uint16_t horizontalVelocityRange; EXPORTG(Y, "mm/s", "", G)
 uint16_t verticalVelocityRange; EXPORTG(Y, "mm/s", "", G)
 uint16_t extendedPingInterval; EXPORTG(Y, "us", "Extended velocity range ping interval (0 is
disabled)", G)
 uint16_t minCalibratedRange; EXPORTG(Y, "0.1mm", "Minimum supported XYZ calibrated range",
G)
 uint16_t maxCalibratedRange; EXPORTG(Y, "0.1mm", "Maximum supported XYZ calibrated range",
G)
 uint16_t internaluse1; EXPORT(N, "", "")
 uint16_t internaluse2; EXPORT(N, "", "")
 uint16_t nCoarseCells; EXPORTG(Y, "", "Number of cells in the coarse lag
measurement", G)
 uint16_t coarseCellStart; EXPORTG(Y, "0.1mm", "Start range to first cell in coarse lag
measurement", G)
 int16_t velocityExponent; EXPORTG(Y, "","Raw velocity exponent (-3 = mm/s, -4 =
0.1mm/s)",G)
 uint16_t pad3[2];
 tBottomCheckConfig bottom; EXPORT(Y, "", "")

57

 tBottomCheckConfig beam; EXPORT(Y,"","")
 uint16_t pad4;

 // Word-wise checksum of the contents of this
 // structure (not including the checksum)
 int16_t checksum; EXPORT(N, "", "")
} tVectrinoProfilerConfig;

typedef int16_t tVelData;
typedef uint16_t tAmpData;
typedef uint8_t tCorrData;
typedef uint8_t tDataQuality;

#define VECTRINOPROFILER_ID_VEL_HEADER 0x0050
typedef struct {
 int16_t checksum; // Word-wise checksum
 uint8_t status; // Instrument status and data size:
 // status & 0x7 = number of beams
 // status & 0xF8 = status bits
 uint8_t headerOnly; // If headerOnly, then no SNR data follows
 uint32_t timeStamp; // Time stamp in units of 0.1 ms. This is a
 // relative to the time that acquisition started
 uint16_t nCells; //
 uint16_t pingInterval1; // Ping separation of first ping pair (us)
 uint16_t pingInterval2; // Ping separation of alternate ping pair (us)
 uint16_t horizontalVelocityRange; // mm/s
 uint16_t verticalVelocityRange; // mm/s
 int16_t temperature; // Temperature (0.01 Celsius)
 uint16_t soundSpeed; // Speed of sound (0.1m/s)
 uint16_t adaptiveStatus; // Status of adaptive calculation (if enabled)

/* Data added after header (if not "headerOnly")
 tAmpData noiseAmplitude[nBeams][nCells]; // In linear counts
 tCorrData noiseCorrelation[nBeams][nCells]; // 255 = 100%
 */
} tVectrinoProfilerVelHeader;

/* Note: The instrument always returns amplitude in linear units. Conversion to
 dB is done by the acquisition software. */

#define VECTRINOPROFILER_ID_VEL 0x0051
typedef struct {
 int16_t checksum; // Word-wise checksum of the contents of this
 // structure (not including the checksum)
 uint8_t status; // Instrument status and data size
 // status & 0x7 = number of beams
 // status & 0xF8 = status bits
 uint8_t pad;
 uint32_t timeStamp; // Time stamp in units of 0.1 ms. This is the
 // time relative to the when acquisition started
 uint16_t nCells; // Number of cells in the profile
 int16_t temperature; // Temperature (0.01 Celsius)
 uint16_t soundSpeed; // Speed of sound (0.1 m/s)
 uint16_t pingPairs; // Number of ping pairs averaged together to produce this sample

/* Data added after header
 int16_t velocity[nBeams][nCells]; // In mm/s
 uint16_t amplitude[nBeams][nCells]; // In linear counts
 uint8_t correlation[nBeams][nCells]; // 255 = 100%
 uint8_t data_quality[nBeams][nCells/4]; // Not currently used
 */
} tVectrinoProfilerVelData;

#define VECTRINOPROFILER_ID_BOTTOMCHECK 0x0061
typedef struct {
 int16_t checksum; // Word-wise checksum of the contents of this
 // structure (not including the checksum)
 // checksum is at the START of this structure
 // to account for variable sized arrays at end.
 uint8_t status; // Instrument status
 uint8_t pad; //
 uint32_t timeStamp; // Time stamp in units of 0.1 ms. This is a
 // relative to the time that acquisition was
 // started. Note that this will wrap every ~5 days.

58

 uint16_t nCells;
 float distanceToBottom; // Interpolated distance to bottom (mm).
 float rangeStart; // Start range of amplitude data (mm)
 float binResolution; // Resolution of each bin in (mm)

/* Data added after header: Instrument dependent.
 uint16_t amplitude[nCells]; // In linear counts
 uint16_t curveFit[nCells]; // In linear counts
 */
} tBottomCheckData;

#define VECTRINOPROFILER_ID_BEAMCHECK 0x0062
#define VECTRINOPROFILER_ID_PROBECHECK 0x0063

typedef struct {
 int16_t checksum; // Word-wise checksum of the contents of this
 // structure (not including the checksum)
 // checksum is at the START of this structure
 // to account for variable sized arrays at end.
 uint8_t status; // Instrument status
 uint8_t nBeams; //
 uint32_t timeStamp; // Time stamp in units of 0.1 ms. This is a
 // relative to the time that acquisition was
 // started. Note that this will wrap every ~5 days.
 uint16_t nCells;
 float rangeStart; // Start range of amplitude data (mm)
 float binResolution; // Resolution of each bin in (mm)
/* Data added after header: Instrument dependent.
 uint16_t amplitude[nBeams][nCells]; // In linear counts
 uint16_t detectedPeaks[nCells]; // In linear counts
 */
} tBeamCheckData;

#define VECTRINOPROFILER_VERSION_PROBE_PROFILE_CALIBRATION 1
typedef struct {
 /* Size is included here as well as header to allow code generation tools
 * to easily generate the read/write routines. */
 uint16_t size; EXPORT(N, "", "")
 uint16_t startRange; EXPORT(Y, "0.1mm", "Applicable start range for this cell")
 uint16_t cellSize; EXPORT(Y, "0.1mm", "Cell size ")
 uint16_t pad; EXPORT(N, "", "")
 int16_t matrix[16]; EXPORT(Y, "", "Calibration matrix")
} tProbeCellCalibration;

#define VECTRINOPROFILER_PROBE_DOWNLOOKING_STEM 1
#define VECTRINOPROFILER_PROBE_DOWNLOOKING_CABLE 2
#define VECTRINOPROFILER_PROBE_SIDELOOKING_STEM 3
#define VECTRINOPROFILER_PROBE_SIDELOOKING_CABLE 4
#define VECTRINOPROFILER_PROBE_FIELD 5

#define PD_MAX_HEADSERIALNO 12

typedef struct {
 /* Checksum goes first to ensure it's in the same place all the time for future versions
 of the structure. */
 int16_t hdrChecksum; EXPORT(N, "", "")
 uint16_t size; EXPORT(N, "", "")
 uint8_t version; EXPORT(Y, "", "Calibration version")
 uint8_t probeType; EXPORT(Y, "", "")
 uint8_t pad[2]; EXPORT(N, "", "")
 uint32_t startRange; EXPORT(Y, "0.1mm", "Start of calibrated range")
 uint32_t endRange; EXPORT(Y, "0.1mm", "End of calibrated range")
 uint32_t cellSize; EXPORT(Y, "0.1mm", "Sampling length per cell")
 uint32_t nCells; EXPORT(Y, "", "Number of transform matrices (one per cell)")
 uint16_t scaleFactor; EXPORT(N, "", "")
 int16_t cellsChecksum; EXPORT(N, "", "")
 uint16_t cellElemSize; EXPORT(N, "", "")
 char serialNo[PD_MAX_HEADSERIALNO]; EXPORT(Y, "","Probe Serial Number")
 uint16_t reserved[15]; EXPORT(N, "", "")

/* Transformation matrix data:
 tProbeCellCalibration beamToXYZ [nCells];
*/

59

} tProbeProfileCalibration;

#define PD_MAX_SERIALNO 14

#define VECTRINOPROFILER_ID_HEADCONF 0x04
typedef struct {
 unsigned char cSync; EXPORT(N, "", "") // sync = 0xa5
 unsigned char cId; EXPORT(N, "", "") // identification = 0x04
 unsigned short hSize; EXPORT(N, "", "") // total size of structure (words)
 unsigned short hConfig; // head configuration:
 unsigned short hFrequency; EXPORT(Y, "kHz", "Transducer Frequency")
 unsigned short hType; // head type
 char acSerialNo[PD_MAX_HEADSERIALNO];
 short hBeamAngles[4];
 short hBeamToXYZ[16]; EXPORT(Y,"", "Beam to XYZ transformation matrix (scaled by 4096)")
 short hSpare0; EXPORT(N, "", "")
 unsigned short hSpare1; EXPORT(N, "", "")
 short hCompAlignUp[9];
 short hCompAlignDown[9];
 short hTiltAlignUp[4];
 short hTiltAlignDown[4];
 unsigned short hPressCalib[4];
 short hTempCalib[4];
 short hTiltCalibUp[8];
 short hCompCalib[16];
 short hDatum[4];
 short hTiltRange;
 unsigned short hTiltScale;
 unsigned short hCompScale;
 unsigned short hTempScale;
 unsigned short hSampPos; // sampling position (Vectrino) (Standard probe = ca 65 counts, Field
probe = ca 125 counts)
 unsigned short hProbeType; // 3/2-d orientation (Vectrino)
 unsigned short hDistOffset; // distance offset (mm) (Vectrino)
 unsigned short hSpare2[7]; EXPORT(N, "", "")
 unsigned short hProbeScale; // probe scale factor (Vectrino)
 unsigned short nBeams; // number of beams
 short hChecksum; EXPORT(N, "", "")
} tPdHeadConf;

#define PD_MAX_SERIALNO 14
#define PD_MAX_HEADSERIALNO 12
#define PD_MAX_FWVERSION 16
#define PD_MAX_FWDATE 32

#define VECTRINOPROFILER_ID_PRODCONF 0x05 // hardware production / configuration data
typedef struct {
 char acSerialNo[PD_MAX_SERIALNO]; // instrument type and serial number
 unsigned short hConfig; EXPORT(Y,"", "Board configuration: Bit 0 - Recorder installed
Bit 1 - Compass Installed Bit 2 - Compass Installed")
 unsigned short hFrequency; EXPORT(Y,"kHz", "Board transmit frequency")
 unsigned short hPICversion; // PIC Code version number
 unsigned short hHWrevision; // Hardware revision
 unsigned short hRecSize; EXPORT(Y,"64K Bytes", "Internal Recorder Size")
 unsigned short hSpare[7]; EXPORT(N, "", "")
 char cFWversion[PD_MAX_FWVERSION]; EXPORT(Y, "", "Firmware Version")
 char cFWRepoVersion[PD_MAX_FWVERSION]; EXPORT(Y, "", "Repository Revision")
 char cFWdate[PD_MAX_FWDATE]; EXPORT(Y, "", "Date firmware was built")
 short hChecksum; EXPORT(N, "", "")
} tPdProdConf;

#pragma pack()

#endif

